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 A B S T R A C T

Underwater scene reconstruction poses a substantial challenge because of the intricate interplay between light 
and the medium, resulting in scattering and absorption effects that make both depth estimation and rendering 
more complex. While recent Neural Radiance Fields (NeRF) based methods for underwater scenes achieve 
high-quality results by modeling and separating the scattering medium, they still suffer from slow training 
and rendering speeds. To address these limitations, we propose a novel method that integrates Multi-View 
Stereo (MVS) with a physics-based underwater image formation model. Our approach consists of two branches: 
one for depth estimation using the traditional cost volume pipeline of MVS, and the other for rendering 
based on the physics-based image formation model. The depth branch improves scene geometry, while the 
medium branch determines the scattering parameters to achieve precise scene rendering. Unlike traditional 
MVSNet methods that rely on ground-truth depth, our method does not necessitate the use of depth truth, 
thus allowing for expedited training and rendering processes. By leveraging the medium subnet to estimate 
the medium parameters and combining this with a color MLP for rendering, we restore the true colors of 
underwater scenes and achieve higher-fidelity geometric representations. Experimental results show that our 
method enables high-quality synthesis of novel views in scattering media, clear views restoration by removing 
the medium, and outperforms existing methods in rendering quality and training efficiency.
1. Introduction

Underwater scene reconstruction is a crucial area of research with 
wide-ranging applications in marine science, underwater archaeology, 
ecology, and geoscience. Conventional methods of subaquatic investi-
gation predominantly depend on divers and remotely operated vehicles 
(ROVs); however, these methodologies are frequently hindered by op-
erational obstacles including restricted visibility, high expenses, and 
the requirement for specialized skills. Through the development of 
precise 3D depictions of submerged environments, researchers can en-
hance their ability to examine intricate underwater terrains, investigate 
marine biodiversity, and track alterations in underwater ecosystems 
throughout time.

Images taken underwater often experience a decrease in quality 
because of the distinct challenges presented by the aquatic environ-
ment. When light passes through water, it experiences attenuation 
that varies with distance and is sensitive to different wavelengths, as 
well as backscatter effects. Attenuation leads to the loss of certain 
colors, particularly red hue, while accentuating blue and green hues. 
Backscatter, in contrast, introduces a veil or haze over the image, 
diminishing clarity. The severity of these effects is contingent upon the 
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proximity of the subject to the camera, in addition to its distance from 
the sea surface. These characteristics present a unique challenge when 
attempting to reconstruct the geometry of an underwater scene, due to 
the varying scattering properties of the medium compared to air.

In the field of Novel View Synthesis (NVS), Neural Radiance Fields 
(NeRF) (Mildenhall, Srinivasan et al., 2021) represented scenes as 
continuous volumetric fields encoded by multilayer perceptions (MLP), 
enabling photorealistic rendering through volume rendering technique. 
3D Gaussian Splatting (3D-GS) (Kerbl, Kopanas, Leimkühler, & Dret-
takis, 2023) introduced differentiable rasterization for view synthesis, 
utilizing anisotropic 3D Gaussian primitives for explicit scene rep-
resentation. Multi-View Stereo (MVS) (Yao, Luo, Li, Fang, & Quan, 
2018) methods aggregated 2D information into 3D geometric percep-
tion representations by constructing cost volumes for depth estimation. 
However, these aforementioned methods are typically designed for 
clear media such as air, where light propagation is essentially un-
affected by the medium. As a result, these methods are unable to 
achieve satisfactory outcomes when applied directly to underwater 
scenes, primarily due to inaccuracies in color and density estimations 
while conducting 3D reconstruction.
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Recently, a NeRF-based underwater scene reconstruction method, 
called SeaThru-NeRF (Levy et al., 2023), was proposed, achieving state-
of-the-art quality by separating the medium. However, due to the 
inherent limitations of the NeRF method, its training and rendering 
speed were too slow. An in-depth analysis of the image formation 
model (Akkaynak & Treibitz, 2018) revealed that the depth prior played 
a crucial role. The MVSNet method, as described by Yao et al. (2018), 
was a widely recognized approach for estimating depth from multiple 
perspectives, utilizing a cost volume generated from differentiable 
homologous transformations. This indicates a favorable prospect for 
integrating these two methodologies.

We propose a novel method that combines MVS with a physically 
based underwater image formation model, which is divided into two 
branches: one branch for depth estimation based MVS, and the other 
for rendering based on the physical image formation model. Depth 
estimation is performed using a traditional cost volume construction 
pipeline (Yao et al., 2018). We design a medium subnet to estimate the 
parameters of the imaging model and combine a color MLP for efficient 
rendering. By estimating the medium parameters and scene depth, we 
can restore the scene’s true colors while improving the accuracy of 
its geometric representation, enabling higher-fidelity and geometrically 
consistent rendering from novel viewpoints. Furthermore, our proposed 
approach does not rely on ground-truth depth required by MVSNet (Yao 
et al., 2018) pipeline and substantially improves both training and 
rendering speed when compared to SeaThru-NeRF. The source code is 
available in https://github.com/Azusa0811/uwMVS.

In summary, the contributions of this work are shown as follows:

• We, for the first time, propose a novel pipeline with multi-view 
stereo for underwater scene reconstruction, which can synthesize 
novel views in scattering media and restore clear views with the 
medium removed.

• We introduce a physics-based image formation model into MVS to 
infer the complete appearance of the scene from images without 
ground-truth depth, thereby enhancing the reconstruction quality 
of underwater environments and training efficiency.

• We propose a network that can independently retrieve the
medium parameters of the imaging model for underwater scene 
reconstruction.

2. Related work

2.1. Novel view synthesis

NVS aims to generate new perspectives of a scene or object based on 
limited input views. Over the years, researchers have developed various 
methods to tackle this problem, spanning from conventional geometry-
centered approaches to sophisticated deep learning techniques. Light 
field methods (Davis, Levoy, & Durand, 2012; Gortler, Grzeszczuk, 
Szeliski, & Cohen, 1996) captured dense arrays of light rays from multi-
ple viewpoints, enabling realistic view synthesis but requiring extensive 
input data. Image-based rendering (Kalantari, Wang, & Ramamoorthi, 
2016; Riegler & Koltun, 2020) interpolated views through warping and 
blending, working well for moderate viewpoint changes. However, both 
approaches face challenges with sparse inputs, occlusions, and large 
viewpoint deviations, limiting their applicability in complex scenes.

The advent of deep learning revolutionized NVS, enabling data-
driven approaches to infer novel views directly from images (Basak, 
Corcoran, McDonnell, & Schukat, 2022). Neural representations (Jiang, 
Ji, Han, & Zwicker, 2020; Lombardi et al., 2019; Shih, Su, Kopf, 
& Huang, 2020; Wizadwongsa, Phongthawee, Yenphraphai, & Suwa-
janakorn, 2021) were widely used for novel view synthesis. Enhance 
novel view synthesis by improving multiplane images (Wizadwongsa 
et al., 2021) and layered depth images (Shih et al., 2020) using neural 
networks and inpainting, achieving better view-dependent effects and 
motion parallax. Jiang et al. (2020) utilize signed distance functions 
2 
(SDFs) for high-quality, topology-aware 3D reconstruction. Lombardi 
et al. (2019) learn a volumetric representation of dynamic scenes 
through an encoder–decoder network and differentiable ray-marching. 
NeRF (Mildenhall, Srinivasan et al., 2021) and its derivatives marked 
a significant breakthrough in NVS. NeRF represented scenes as con-
tinuous volumetric fields encoded by multilayer perceptrons, enabling 
photorealistic rendering through volume rendering techniques (Bar-
ron et al., 2021; Barron, Mildenhall, Verbin, Srinivasan, & Hedman, 
2022). Efficiency improvements had been a key focus, with meth-
ods like Mip-NeRF (Barron et al., 2021) and Instant-NGP (Müller, 
Evans, Schied, & Keller, 2022) significantly accelerating training and 
rendering using hierarchical sampling and optimized neural represen-
tations. PlenOctrees (Yu et al., 2021) and Plenoxels (Fridovich-Keil 
et al., 2022) improved efficiency by pre-computing scene representa-
tions and dividing large-scale environments into manageable regions. 
Extensions for dynamic scenes, such as D-NeRF (Pumarola, Corona, 
Pons-Moll, & Moreno-Noguer, 2021) incorporated temporal informa-
tion to handle motion, while NeRF-W (Martin-Brualla et al., 2021) 
and Block-NeRF (Tancik et al., 2022) enhanced robustness in com-
plex real-world environments. Few-shot and generalizable approaches, 
including PixelNeRF (Yu, Ye, Tancik and Kanazawa, 2021) and Depth-
supervised NeRF (Deng, Liu, Zhu, & Ramanan, 2022), reduced de-
pendency on dense multi-view data, expanding NeRF’s applicability 
to sparse-view scenarios. Notwithstanding these advancements, NeRF-
based approaches still encounter difficulties with slow training and 
rendering times, thereby impeding their wider acceptance.

Recently, 3D-GS (Kerbl et al., 2023) introduced differentiable ras-
terization as a novel approach to view synthesis, leveraging a set of 
anisotropic 3D Gaussian primitives for explicit scene representation. 
Its fast training speed and high-quality real-time rendering capabili-
ties have made 3D-GS a prominent focus in the field of NVS. Many 
improvements have also been made to the 3D-GS method, such as 
antialiasing (Yan, Low, Chen, & Lee, 2024; Yu, Chen, Huang, Sattler, 
& Geiger, 2024), effectively density control (Ye, Li, Liu, Qiao, & Dou, 
2024) and Sparse views reconstruction (Charatan, Li, Tagliasacchi, & 
Sitzmann, 2024; Yang et al., 2024). However, the explicit representa-
tion of 3D-GS is not well-suited for rendering semitransparent media, 
such as underwater scenes with light scattering and absorption.

2.2. Multi-view stereo method

MVS aims to reconstruct a dense 3D representation of a scene from 
multiple views. Traditional methods (Fua & Leclerc, 1995; Galliani, 
Lasinger, & Schindler, 2015; Schonberger & Frahm, 2016; Schönberger, 
Zheng, Frahm, & Pollefeys, 2016) relied on handcrafted features and 
similarity metrics, such as voxel-based and point-based approaches, and 
had laid the groundwork for this field. Fua and Leclerc (1995) proposed 
a surface reconstruction method based on object geometric center 
by combining multi-view stereo with light shadow cues for the first 
time. Galliani et al. (2015) proposed a massively parallel MVS method 
based on surface normal diffusion, but there are shortcomings in the re-
construction of thin structures. Schonberger and Frahm (2016) revised 
the Structure-from-Motion (SFM) process, provided robust camera pose 
estimation for disordered image sets through feature point matching. 
This work became the benchmark framework for modern MVS sys-
tems. Schönberger et al. (2016) proposed a pixel-level view selection 
strategy based on a probabilistic model to reduce the deep fusion 
artifacts in low-texture areas by evaluating the luminosity consistency 
weights between viewing angles. Voxel-based methods (Kutulakos & 
Seitz, 2000; Seitz & Dyer, 1999) evaluated the occupancy of discrete 
3D units but were limited by high memory usage, while point-based 
methods, like PMVS (Furukawa & Ponce, 2010), focused on expanding 
reliable feature matches but may struggle in textureless regions.

Learning-based methods have become the mainstream due to their 
flexibility. With the development of deep learning, cost volume has 
been widely used for depth estimation in MVS methods (Zhou, Zhao, 
Wang, Hao, & Lei, 2023). MVSNet (Yao et al., 2018) proposed for the 
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first time an end-to-end pipeline that aggregated 2D information into 
a 3D geometric-aware representation by building a cost volume. The 
subsequent works follow the pipeline of multi-view 3D reconstruction 
with depth estimation from cost volume and improve from various 
aspects, such as improving memory consumption with recurrent plane 
sweeping (Yan et al., 2020; Yao et al., 2019) or coarse-to-fine architec-
tures (Cheng et al., 2020; Gu et al., 2020; Yu & Gao, 2020). However, 
the aforementioned MVS networks require ground truth depth as the 
geometric supervision for training. Thus, in the field of novel view 
synthesis, (Chen et al., 2021, 2025; Lin et al., 2022; Liu et al., 2025; 
Oechsle, Peng, & Geiger, 2021) attempted to combine MVS methods 
with NeRF methods or 3D-GS methods. Unisurf combines MVS and 
NeRF to achieve high-quality 3D reconstruction without the need for 
an input mask through a unified implicit surface and radiance field 
representation. MVSNeRF (Chen et al., 2021) integrated traditional 
MVS cost volumes with NeRF, using 3D CNNs to predict radiance 
fields directly from multi-view images while maintaining view con-
sistency. ENeRF (Lin et al., 2022) enhanced NeRF by incorporating 
MVS-derived depth priors and depth consistency losses to guide the 
radiance field optimization. Moving beyond implicit representations, 
MVSGaussian (Liu et al., 2025) converted MVS geometry into 3D 
Gaussians for real-time rendering, preserving geometric details through 
Gaussian parameterization. MVSplat (Chen et al., 2025) proposed a hy-
brid point-radiance field representation that combines dense MVS point 
clouds with continuous neural fields via learnable splatting, achiev-
ing both geometric accuracy and rendering efficiency. These methods 
demonstrate progressive improvements in either reconstruction quality, 
geometric constraints, or rendering speed, collectively advancing the 
state of 3D scene reconstruction and novel view synthesis. Our model 
extrapolates the complete appearance of the scene directly from images 
without the need for ground truth depth, drawing inspiration from the 
integration of these various methodologies.

2.3. Image processing in scattering media

Scattering media, such as underwater environments, often face 
challenges like color shift, image warping, and contrast reduction. 
These issues arise primarily due to complex lighting conditions, in-
cluding light scattering and attenuation. Current underwater image 
enhancement (UIE) techniques can generally be divided into two main 
categories: non-deep learning-based approaches and deep learning-
based approaches. CNN-based models (Chang, Wang, Du, & Xu, 2025; 
Li et al., 2021; Zhang et al., 2024) have achieved end-to-end under-
water image restoration, while Transformer-based architectures (Peng, 
Zhu, & Bian, 2023) have further improved restoration outcomes. In 
contrast, non-deep learning methods are typically based on physical 
models and rely on prior assumptions. For example, Drews, Nasci-
mento, Moraes, Botelho, and Campos (2013) employed the dark chan-
nel prior to estimate transmission maps specific to underwater condi-
tions, whereas (Akkaynak & Treibitz, 2018) refined the atmospheric 
scattering model for more accurate underwater image restoration. How-
ever, these non-deep learning methods rely on the accuracy of prior 
assumptions such as depth information, which has limited their further 
development. This question can be well solved by 3D vision. Various 
works (Akkaynak & Treibitz, 2019; Ramazzina et al., 2023; Sethura-
man, Ramanagopal, & Skinner, 2023) in underwater image processing 
have achieved remarkable results using the imaging model. These 
methods combine imaging models with NeRF to inspire underwater 
scene reconstruction using physical imaging. The state-of-the-art NeRF-
based underwater scene reconstruction method, SeaThru-NeRF (Levy 
et al., 2023), incorporated the image formation model (Akkaynak & 
Treibitz, 2018) into the NeRF rendering equations by estimating direct 
and backscatter components.
3 
3. Method

In this section, we detail the proposed MVS method for underwater 
scenes, which leverages an underwater image formation model to 
enhance MVS performance by better accounting for underwater optical 
characteristics. Section 3.1 introduces the preliminary. The overall 
framework of the method is described in Section 3.2. In Section 3.3, 
we detail the use of the multi-view approach for depth estimation. The 
application of the underwater image formation model is explained in 
Section 3.4. Finally, Section 3.5 describes the specific implementation 
details.

3.1. Preliminary

Underwater Image Formation Model. The image quality captured 
by underwater imaging systems is significantly hindered by the intri-
cate nature of the underwater environment, predominantly because 
of light attenuation and scattering in water. The primary focus of 
underwater imaging theory is on these phenomena to elucidate and 
enhance the deterioration of underwater images.

The decrease in the intensity of light as it passes through water 
adheres to an exponential relationship, resulting from two distinct 
physical phenomena: absorption and scattering. The process of absorp-
tion leads to the dissipation of light energy, whereas scattering causes 
a redirection in the path of light propagation. Light attenuation is a 
multifaceted phenomenon influenced by wavelength, exhibiting vary-
ing levels of attenuation across different wavelengths, demonstrating 
selectivity. Red, yellow, and light green are more greatly attenuated in 
the visible spectrum than blue and green light, which are attenuated 
to a lesser degree. Consequently, underwater images generally display 
a blue–green coloration. The reduction of light limits the operational 
range of underwater imaging systems. The suspended particles and im-
purities found in the water are the main contributors to light scattering. 
Scattering effects can be classified into forward scattering and backscat-
ter. Forward scattering pertains to the scattering of light at small angles 
as it reflects off the target surface before reaching the camera, causing 
the image to appear blurred. On the contrary, backscatter refers to light 
that enters the camera directly from natural or artificial light sources, 
following its scattering by suspended particles, causing a decrease in 
image contrast.

We adopt the revised underwater image formation model (Akkay-
nak & Treibitz, 2018) as the general model under ambient illumination. 
The final image 𝐼 is decomposed into the direct component and the 
backscatter component as follows: 

𝐼 =

Direct
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐽 ⋅ 𝑒𝑥𝑝(−𝛽𝐷

(

𝐯𝐷
)

⋅ 𝑧) +𝐵∞ ⋅
(

1 − 𝑒𝑥𝑝(−𝛽𝐵
(

𝐯𝐵
)

⋅ 𝑧)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Backscatter

(1)

where 𝐽 is the clear scene captured at depth 𝑧 without medium, and 
𝐵∞ is the backscatter water color at infinity distance. The 𝛽𝐷 and 𝛽𝐵
are attenuation coefficients of the direct and backscatter components, 
respectively. The colors will be multiplied with attenuation coefficients 
to represent the effects of the medium on the color. The vectors 𝑣𝐷
and 𝑣𝐵 represent the dependencies of 𝛽𝐷 and 𝛽𝐵 on range, object 
reflectance, spectrum of ambient light, spectral response of the camera, 
and the physical scattering and beam attenuation coefficients of the 
water body.

3.2. Overview

Given multi-view images, we aim to synthesize the target image 
from a novel camera pose in an underwater scene. The overview of 
our proposed method is depicted in Fig.  1. The initial step involves 
utilizing a Feature Pyramid Network (FPN) (Lin et al., 2017) to extract 
multi-scale features from the input multi-view source views. These 
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Fig. 1. Overview. We first use an FPN to extract image features from the source view and warp them into warped features {𝐹𝑤
𝑖 }𝑁𝑖=1. The distorted characteristics are combined into 

a cost volume, which is then processed using a 3D CNN to generate depth. Subsequently, a pooling network is utilized to consolidate features for each 3D point at the predicted 
depth and then integrate them with the source image features. Following this, a color MLP and a medium-sized subnet are utilized to analyze these features, resulting in a refined 
image with the medium removed. Ultimately, the medium subnet is utilized once more to conduct additional processing on the image, resulting in the extraction of the backscatter 
and attenuation images. These are subsequently combined to produce the ultimate reconstructed outcome.
characteristics are subsequently transferred onto the designated camera 
frustum through differentiable homography to create a cost volume. 
This volume is then utilized by a 3D CNN for regularization to gen-
erate the depth map. The depth prediction branch of this system is 
constructed utilizing a cascading structure that propagates the depth 
map sequentially and systematically. Utilizing these depth maps, we 
aggregate multi-view and spatial information for each 3D point at the 
predicted depth by encoding features. Following this, we utilize a color 
MLP and the medium subnet to analyze the encoded features, which 
leads to the creation of a clear image with the medium removed. The 
intermediate subnet encodes the perspective of the view, integrates 
the depth map, and subsequently decodes the intermediate parameters. 
Finally, the medium subnet is used again to enhance the clear image 
by obtaining backscatter and attenuation images. These images are then 
combined to produce the final reconstructed result.

3.3. Depth estimation using MVS

The depth map produced by MVS is an essential component of 
our workflow, facilitating seamless integration with the underwater 
image formation model. Our approach is grounded in the insights of 
learning-based MVS methods (Yao et al., 2018).

Feature Map. We employ a Feature Pyramid Network (FPN) to 
extract multi-scale image features {𝐹𝑖 ∣ 𝑖 = 1,… , 𝑁} from input source 
multi-view images {𝐼𝑖 ∣ 𝑖 = 1,… , 𝑁}. The structure of our implemented 
FPN is illustrated in Fig.  2. Specifically, each input image 𝐼𝑖 ∈ R𝐻×𝑊 ×3

is processed through the network to generate a low-resolution feature 
map 𝐹𝑖,1 ∈ R𝐻∕4×𝑊 ∕4×32. Subsequently, these features are fused using 
lateral connections and upsampling, producing two additional feature 
maps at higher resolutions: 𝐹𝑖,2 ∈ R𝐻∕2×𝑊 ∕2×16 and 𝐹𝑖,3 ∈ R𝐻×𝑊 ×8. This 
multi-resolution feature representation is then refined via smoothing 
convolutions to enhance the quality of the features before being passed 
to subsequent stages of the pipeline. The multi-scale feature extractor 
integrates high-resolution features with information from lower reso-
lutions through a learned upsampling mechanism. This design ensures 
4 
Fig. 2. The structure of FPN. We employ an FPN to extract multi-scale image features.

that each stage in the multi-stage depth prediction process uses mean-
ingful feature representations from previous stages, making it easier to 
extract high-frequency features effectively (Cheng et al., 2020).

Cost Volume. We first partition a set of sampling planes from an 
initial scene range depth {L𝑖 ∣ 𝑖 = 1,… , 𝑁}, and then warp image 
features of source views 𝐹𝑖 onto 𝐷 sweeping planes to build cost 
volume. This step requires the use of the differentiable homography, 
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Fig. 3. The structure of 3DCNN. We employ a 3D CNN for cost volume regularization.
as described below: 

H𝑖(𝑧) = K𝑖R𝑖

(

I +

(

R−1
𝑖 t𝑖 − R−1

𝑡 t𝑡
)

a𝑇R𝑡

𝑧

)

R−1
𝑡 K−1

𝑡 (2)

where [𝐾𝑖, 𝑅𝑖, 𝑡𝑖] and [𝐾𝑡, 𝑅𝑡, 𝑡𝑡] denote camera intrinsic, rotation and 
translation of input source view and target view, respectively. 𝐼 is the 
identity matrix and 𝑎 is the principal axis of the target view camera. We 
use the matrix H𝑖(𝑧) warping the pixels at (𝑢, 𝑣) from the source view to 
the target view at sampled depth z. Finally, we can obtain the warped 
feature maps of the target view, which can be defined as: 

𝐹𝑤
𝑖 (𝑢, 𝑣, 𝑧) = 𝐹𝑖 ⋅

(

H𝑖(𝑧) ⋅ [𝑢, 𝑣, 1]𝑇
)

(3)

To build the cost volume 𝐶, we compute the variance of these warped 
multi-view feature volumes {𝐹𝑤

𝑖 ∣ 𝑖 = 1,… , 𝑁}, which is widely used in 
MVS (Cheng et al., 2020; Gu et al., 2020; Yao et al., 2018) for geometry 
reconstruction. For each voxel in 𝐶, located at the coordinates (𝑢, 𝑣, 𝑧), 
we calculate its cost feature vector as: 

𝐶 =

∑𝑁
𝑖=1

(

𝐹𝑤
𝑖 − 𝐹𝑤

𝑖

)2

𝑁
(4)

where 𝐹𝑤
𝑖  is the average volume among all feature volumes. This cost 

volume is created utilizing variance to represent deviations in image 
appearance among various input perspectives. These discrepancies are 
a result of variations in scene geometry and view-dependent shading 
effects.

Depth Prediction from Probability Volumes. During this step, 
a 3D CNN is utilized to analyze the cost volume, producing a depth 
probability volume �̂�, as illustrated in Fig.  3. Afterwards, a depth 
distribution can be calculated based on this probability volume. The 
final depth prediction is computed by weighting each depth hypothesis 
using the depth probability distribution. Specifically, we obtain its 
probability 𝑃𝑖 at a specific depth plane L𝑖 by performing the softmax 
operation on the depth probability volume, namely: 

𝑃𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(�̂�) (5)

The depth value and its confidence at pixel (𝑢, 𝑣) in the target view are 
defined as the weighted average �̂�(𝑢, 𝑣) and the standard deviation �̂�
are calculated by 

�̂�(𝑢, 𝑣) =
𝐷
∑

𝑖=1
𝑃𝑖(𝑢, 𝑣) ⋅ 𝐿𝑖(𝑢, 𝑣) (6)

�̂�(𝑢, 𝑣) =

√

√

√

√

𝐷
∑

𝑃𝑖(𝑢, 𝑣) ⋅
(

𝐿𝑖(𝑢, 𝑣) − �̂�(𝑢, 𝑣)
)2 (7)
𝑖=1

5 
By conducting a calculation using the depth prediction and its variance 
to establish a confidence interval, we can measure the uncertainty of 
the prediction and identify the probable range of depth within which 
the object is positioned. That is: 

�̂� (𝑢, 𝑣) = [�̂�(𝑢, 𝑣) − 𝜆�̂�(𝑢, 𝑣), �̂�(𝑢, 𝑣) + 𝜆�̂�(𝑢, 𝑣)] (8)

where 𝜆 is a scalar parameter that sets the size of the confidence 
interval. This depth range will become the initial depth range for fine 
processing.

Coarse-to-fine Prediction. The depth prediction pipeline is devel-
oped in a cascade structure, which allows for the propagation of the 
depth map in a coarse-to-fine manner. The objective is to accurately 
capture the geometric characteristics of the scene using multiple im-
ages. It then aims to generate a detailed depth prediction map for a 
specific viewpoint. Subsequently, we construct a high-resolution cost 
volume utilizing the depth map that was previously estimated. Through 
the processing of this refined volume, we are able to produce a more 
detailed depth map and a 3D feature volume. All depth maps are stored 
in the buffer for utilization in the subsequent phase.

3.4. Underwater image formation

Traditional MVS methods typically use cost volume only for geo-
metric reconstruction, but recent works (Chen et al., 2021; Lin et al., 
2022; Liu et al., 2025) show that it can also be leveraged to infer 
the complete appearance of the scene. Inspired by ENeRF (Lin et al., 
2022), we propose to apply an underwater imaging model to MVS and 
reconstruct the entire underwater scene.

In Section 3.3, we obtain the image features {𝐹𝑖 ∣ 𝑖 = 1,… , 𝑁} from 
the input source views, as well as the depth maps �̂�tar for the target 
view and {�̂�src,𝑖 ∣ 𝑖 = 1,… , 𝑁} for the source views. In this section, we 
further process these to obtain the final reconstruction.

To effectively extract corresponding pixel-aligned features {𝑓𝑖 ∣ 𝑖 =
1,… , 𝑁} of target view from multi-view source image features, we 
first compute the 3D coordinates based on the depth map �̂�tar of the 
target view and transform them from the world coordinate system 
to the image coordinate systems of the source cameras. By utilizing 
the converted 2D coordinates, we extract features at the respective 
locations from the feature maps of the source images using bilinear 
interpolation. For every 3D point, we compute the unit direction vec-
tors in relation to both the target camera and the source cameras. This 
process involves standardizing the vectors and calculating differences in 
ray directions to account for variations in light directions. The extracted 
characteristics of the sampled image are combined with the calculated 
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ray difference vectors to create a cohesive feature representation. Fi-
nally, we used the pooling algorithm to aggregate all the pixel-aligned 
features to obtain the image features 𝑓img of the target view, namely: 

𝑓img = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑓1,… , 𝑓𝑁 ) (9)

Similarly, we translate the coordinates of each 3D point in the 
target view into a two-dimensional sampling grid, and then sample 
the warped multi-view feature volumes {𝐹𝑤

𝑖 ∣ 𝑖 = 1,… , 𝑁} to obtain 
the grid features 𝑓grid at the corresponding coordinates. Through the 
acquisition of feature representations at distinct locations, we augment 
the model’s understanding of scene geometry. The color of a 3D point 
is determined by extending the color from the originating viewpoint 
along the path of the destination viewpoint. Specifically, the color from 
the source view is modulated by a blend weight 𝑤𝑖, which is computed 
using a color MLP 𝜑𝑐𝑜𝑙𝑜𝑟 via: 
𝑤𝑖 = 𝜑𝑐𝑜𝑙𝑜𝑟(𝑓𝑖𝑚𝑔 , 𝑓grid, 𝑓𝑖) (10)

Our model is derived from the image formation model described in 
Section 3.1, the color of each pixel in both the source views and the 
target view adheres to the following imaging equation: 
𝑐 = 𝑐clr ⋅ exp(−𝜎𝑎𝑡𝑡𝑒𝑛 ⋅ �̂�) + 𝑐bs ⋅ (1 − exp(−𝜎𝑏𝑠 ⋅ �̂�)) (11)

where 𝑐 represents the pixel color in water medium and 𝑐clr is the 
clear image after accounting for the removal of the water medium. 
There are three medium parameters in the equation, 𝜎𝑎𝑡𝑡𝑒𝑛 and 𝜎𝑏𝑠 are 
the attenuation and scattering coefficients, respectively, and 𝑐bs is the 
scattering color of the water medium.

To forecast medium parameters, a distinct subnet called the
‘medium module’ is employed. It computes these parameters based 
on the orientation of individual pixels within an image, aligned with 
the world coordinate system. This module consists of an encoder 
and a decoder. The medium encoder employs spherical harmonic 
encoding (Ramamoorthi & Hanrahan, 2001) to project the input di-
rection map into a higher-dimensional space, thereby enhancing its 
ability to capture subtle directional variations and extract characteristic 
information across various frequencies. 
𝑑 = SHencoding(𝑑) (12)

where 𝑑 is the input direction map and 𝑑 is the result after encoding. 
Subsequently, we put 𝑑 into medium decoder to get a base output 𝑠𝑏𝑎𝑠𝑒. 
We apply different activation functions to the base output to get the 
final media parameters. 
𝑠𝑏𝑎𝑠𝑒 = MediumMLP(𝑑), (13)

𝜎𝑎𝑡𝑡𝑒𝑛, 𝜎𝑏𝑠 = Softplus(𝑠𝑏𝑎𝑠𝑒), (14)

𝑐bs = Sigmoid(𝑠𝑏𝑎𝑠𝑒) (15)

Based on Eq. (11), we first recover the clear image {𝑐clr𝑠𝑟𝑐,𝑖 ∣ 1,… , 𝑁}
of source views and then perform a weighted averaging operation to 
obtain the clear image 𝑐clr𝑡𝑎𝑟 of the target view. 

𝑐clr𝑡𝑎𝑟 =
𝑁
∑

𝑖=1
𝑤𝑖 ⋅ 𝑐

clr
𝑠𝑟𝑐,𝑖 (16)

We continue to use Eq. (11) to reconstruct the image in the water 
medium. Specifically, the attenuation coefficient is applied to diminish 
the clarity of the image in order to obtain the attenuated image, 
which is subsequently combined with the predicted scattering image 
to produce the ultimate reconstruction outcome. 
𝐼 = 𝐼𝑎𝑡𝑡𝑒𝑛 + 𝐼𝑏𝑠, (17)

𝐼𝑎𝑡𝑡𝑒𝑛 = 𝑐clr𝑡𝑎𝑟 ⋅ exp(−𝜎
𝑎𝑡𝑡𝑒𝑛 ⋅ �̂�𝑡𝑎𝑟), (18)

𝐼𝑏𝑠 = 𝑐𝑏𝑠 ⋅ (1 − exp(−𝜎𝑎𝑡𝑡𝑒𝑛 ⋅ �̂�𝑡𝑎𝑟)) (19)

where 𝐼 represents the final reconstruction result, while 𝐼𝑎𝑡𝑡𝑒𝑛 and 𝐼𝑏𝑠
denote the attenuated image and the scattering image, respectively.
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3.5. Loss function

Our loss function follows the 3D-GS method with some improve-
ments. In the initial 3D-GS method (Kerbl et al., 2023), the loss function 
is generally composed of an 1 Loss and a D-SSIM Loss as: 
 = (1 − 𝜆)1 + 𝜆D-SSIM (20)

we generally set 𝜆 = 0.2. Inspired by Mildenhall, Hedman, Martin-
Brualla, Srinivasan, Barron (2021), applying a loss function that sig-
nificantly penalizes errors in dark areas, in accordance with the way 
human perception condenses dynamic range, can enhance the quality of 
reconstructing under-illuminated scenes. To be more specific, we adopt 
the reconstruction loss as follows: 

recon 
(

�̂�, 𝐶∗) =
(

�̂� − 𝐶∗

sg(�̂�) + 𝜖

)2
(21)

where 𝑠𝑔(⋅) stands for stop gradient and 𝜖 = 10−3, �̂� and 𝐶∗ denote the 
reconstructed pixel color and the ground truth pixel color. We use the 
reconstruction loss instead of the 1 Loss to build the proposed final 
loss function as: 
 = (1 − 𝜆)𝑟𝑒𝑐𝑜𝑛 + 𝜆D-SSIM (22)

where 𝜆 = 0.2 is set in all our tests.

4. Experiments

4.1. Experimental setting

SeaThru-NeRF Dataset. SeaThru-NeRF (Levy et al., 2023) released 
a real forward-facing (Mildenhall, Srinivasan et al., 2021) dataset con-
sisting of four multi-view underwater scenes captured in different 
sea regions: IUI3 Red Sea, Curaçao, Japanese Gardens Red Sea, and 
Panama. These four scenes include 29, 20, 20, and 18 images, re-
spectively, with 25, 17, 17, and 15 images designated for training, 
while the remaining 4, 3, 3, and 3 images are reserved for validation. 
All images were captured in RAW format using a Nikon D850 SLR 
camera housed in a Nauticam underwater casing with a dome port, 
effectively minimizing refraction effects that could interfere with the 
pinhole camera model. The RAW images were then downsampled to 
an approximate resolution of 900 × 1400. Prior to further processing, 
the linear input images were white-balanced with a 0.5% channel-wise 
clipping to eliminate extreme noise pixels. Finally, camera poses were 
estimated using COLMAP (Schonberger & Frahm, 2016).

Implementation Details. Our method is implemented using Py-
Torch and trained on a single RTX 3090 GPU. We use the Adam
(Kingma & Ba, 2014) optimizer and train the model for 3k iterations per 
scene. In practice, we utilize 16 and 8 depth planes for constructing the 
cost volumes at the coarse and fine levels, respectively. During training, 
2, 3, or 4 source views are randomly chosen as inputs with probabilities 
of 0.1, 0.8, and 0.1, respectively.

For the Medium Subnet, the Direction Encoder utilizes spherical 
harmonic encoding at level 4. The Medium Decoder is an MLP consist-
ing of two linear layers: the first layer contains 128 hidden units, while 
the second layer contains 64 hidden units, both with ReLU activation. 
The color MLP comprises two linear layers with 24 hidden units and 
ReLU activation.

Baseline Methods and Evaluation Metrics. To demonstrate im-
provements specific to underwater scenes, we first compare our method 
with other MVS-based approaches, such as ENeRF (Lin et al., 2022) and 
MVSGaussian (Liu et al., 2025), as well as the widely used 3D recon-
struction method, 3D-GS. Most importantly, we conduct an in-depth 
comparison with SeaThru-NeRF (Levy et al., 2023), the state-of-the-art 
NeRF-based method for underwater scene reconstruction, to emphasize 
the advancements introduced by our method. For evaluation, we adopt 
the criteria established in prior works, including ENeRF (Lin et al., 
2022), MVSNeRF (Chen et al., 2021), and MVSGaussian (Liu et al., 
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Table 1
Quantitative evaluation results on the SeaThru-NeRF dataset. ↑ indicates that larger values are better, while ↓ signifies the opposite. Bolded values highlight the best results, and 
underlined values represent the second-best.
 Scene Cueaçao IUI3 Red Sea Panama Japanese Gardens Red Sea Avg.  
 methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ time  
 SeaThru-NeRF 32.01 0.964 0.198 28.22 0.937 0.271 29.59 0.940 0.219 24.09 0.879 0.264 10 h  
 3D-GS 28.93 0.907 0.195 22.59 0.728 0.351 29.11 0.894 0.193 21.50 0.837 0.2188 29 min 
 ENeRF 21.49 0.724 0.620 18.76 0.713 0.469 19.85 0.671 0.608 18.22 0.634 0.565 15 h  
 MVSGaussian 30.27 0.911 0.232 27.42 0.905 0.244 27.38 0.877 0.237 25.59 0.916 0.187 1 h  
 Ours 32.29 0.942 0.187 31.82 0.953 0.241 29.95 0.924 0.206 26.44 0.940 0.180 15 min 
Fig. 4. Restorations and depth maps. We contrast our approach with SeaThru-NeRF through the exhibition of renderings devoid of the medium. Underneath each image, we 
present the respective depth maps. Our restoration technique effectively preserves a greater level of color detail. In comparison to SeaThru-NeRF, the depth renderings exhibit a 
higher level of smoothness and coherence.
2025). For the Real Forward-facing (Mildenhall, Srinivasan et al., 2021) 
dataset, where the peripheral regions of images are typically not visible 
in the input views, we focus our evaluation on the central 80% area of 
the images. We use the widely-used PSNR, SSIM (Wang, Bovik, Sheikh, 
& Simoncelli, 2004), and LPIPS (Zhang, Isola, Efros, Shechtman, & 
Wang, 2018) metrics to compare the quality of synthesized views. All 
models are trained on the same GPU using the same data set to ensure 
fairness.

4.2. Results

Quantitative Results. To evaluate the effectiveness of our method, 
we compare its rendering quality against several baseline methods 
using the standard SeaThru-NeRF dataset. Table  1 presents a detailed 
comparison of PSNR, SSIM, LPIPS, and average training time across 
four distinct scenes for novel view synthesis. The results clearly demon-
strate the advantages of our method, which surpasses other methods 
in most scenarios and shows notable enhancements in training effi-
ciency. Our method demonstrates superior performance, resulting in 
an average PSNR enhancement of 1.65 dB compared to the leading 
NeRF-based underwater scene reconstruction method, SeaThru-NeRF. 
In combination with the scenes in Fig.  5, we can see that our im-
provement in PSNR is reflected mainly in two deeper scenes. Of utmost 
importance, our approach significantly decreases the time required for 
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Table 2
Statistical analysis of performance metrics. Δ shows the mean difference (Ours −
SeaThru-NeRF). Statistical significance is assessed using Wilcoxon signed-rank test, with 
* indicating 𝑝 < 0.1. Effect size (𝛿) is calculated using Cliff’s delta, where |𝛿| > 0.33
represents medium effect.
 Metric SeaThru Ours Δ p-val 𝛿 Sig. (𝑝 < 0.1) 
 PSNR 28.44 30.09 +1.65 0.2274 0.1243 –  
 SSIM 0.9379 0.9351 −0.0028 0.8302 −0.3373 –  
 LPIPS 0.2402 0.2115 −0.0287 0.0955 −0.3136 *  

training. While our approach may not excel in all metrics, its consistent 
performance secured a second-place finish, closely behind the leader, 
yet it is noteworthy for its superior overall quality. Furthermore, our 
approach surpasses other MVS methods, demonstrating that the inte-
gration of MVS with a physical imaging model effectively enhances the 
ability to reconstruct underwater scenes.

Fig.  5 shows the novel view renderings in the water medium. To 
further emphasize the superiority of our approach, we zoom in on the 
areas highlighted by the red squares. As shown in Fig.  6, our approach 
maintains sharp geometric features in remote regions, demonstrating 
its capacity to accurately represent intricate scene geometry, particu-
larly in deep and complex environments. Furthermore, our approach 
successfully isolates objects from the scattering medium. In particular, 
we strive to eliminate the presence of water in the image, thereby 
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Fig. 5. Novel view synthesis in water medium. The columns, from left to right, show the underwater scene renderings for the ‘Cueaçao’, ‘IUI3 Red Sea’, ‘Japanese Gardens Red 
Sea’, and ‘Panama’ scenes. The rendering quality of distant details, highlighted within the red squares, is compared and presented in Fig.  6.
presenting restored results that are clearer and based on the estimated 
medium parameters derived from our image formation model. Fig. 
4 demonstrates the potential of our method for restoring the color 
of underwater scenes. Although SeaThru-NeRF’s restored images may 
appear grayscale, our method preserves a greater amount of color 
detail. Furthermore, our depth maps exhibit increased smoothness and 
coherence in comparison to those generated by SeaThru-NeRF, thus 
suggesting a higher level of accuracy in depth estimation. This is par-
ticularly advantageous for our physics-based model, as the integration 
of MVS’s depth estimation capabilities into the physical imaging model 
is essential for the success of our approach.

Statistical tests. We employ statistical testing methods to assess 
the robustness of our proposed approach compared to SeaThru-NeRF. 
Specifically, we conduct an in-depth analysis of the quantitative eval-
uation results from the SeaThru-NeRF dataset, collecting 13 pairs of 
test samples across four different scenes. For each evaluation metric 
(PSNR, SSIM, and LPIPS), we utilize the Wilcoxon signed-rank test to 
determine the statistical significance of performance differences. Given 
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the small sample size (n = 13) and its potential limitations in statistical 
testing, we compute Cliff’s Delta (𝛿) as an effect size measure and 
adopt a significance level of 𝛼 = 0.1. This robust non-parametric metric 
quantifies the magnitude of the effect by assessing the dominance 
probability between the two data distributions.

As shown in Table  2, our method achieves an average PSNR im-
provement of +1.65 dB in test scenarios. Although this enhancement 
did not reach conventional statistical significance (𝑝 = 0.2274) due 
to limited sample size, the boxplot analysis in Fig.  7 reveals notable 
distributional advantages: our method demonstrates a higher median 
value and a more compact interquartile range (IQR), indicating reduced 
performance variability and greater stability across diverse scenarios. 
While showing marginally lower SSIM values compared to SeaThru-
NeRF, the difference is not statistically significant and our method 
exhibits fewer outliers. More importantly, our approach demonstrates 
superior performance in LPIPS metrics with a more concentrated distri-
bution and narrower fluctuation range, achieving statistical significance 
at 𝛼 = 0.1 (𝑝 = 0.0955) with an effect size approaching medium 
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Fig. 6. The rendering of distant details. We compare our method with several baseline methods. Our method outperforms them in rendering quality and better preserves distant 
geometric details.
Fig. 7. Boxplots of statistical analysis. Overall, our method exhibits a more compact and concentrated distribution compared to SeaThru-NeRF, reducing performance variability 
and ensuring stable results across diverse scenarios.
magnitude (|𝛿| = 0.3136). This evidence collectively confirms the 
practical advantages of our method in visual quality perception.

The robustness of underwater imaging methods holds particular im-
portance for practical applications. Complex underwater environments 
present substantial variations in lighting conditions and turbidity levels 
across different scenarios. In such contexts, consistent performance 
reliability and predictable lower-bound performance become crucial 
for ensuring satisfactory user experience. Compared with SeaThru-
NeRF, our method offers enhanced stability and more dependable 
performance guarantees, particularly evidenced by its tighter distri-
bution characteristics across all evaluation metrics. This operational 
9 
stability proves especially valuable for real-world deployments where 
environmental conditions may vary substantially.

4.3. Ablation study

Ablation of key components. We conduct ablation experiments on 
the ‘IUI3 Red Sea’ scene to validate the contributions of the three key 
components of our framework: cascade structure, reconstruction loss, 
and medium subnet. As shown in Table  3, both the cascade structure 
and reconstruction loss lead to improvements in reconstruction quality, 
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Table 3
Ablation of key components on the ‘IUI3 Red Sea’ scene.
 Cascade Recon loss Medium subnet PSNR↑ 
 ✓ ✓ 31.25  
 ✓ ✓ 31.73  
 ✓ ✓ 29.53  
 ✓ ✓ ✓ 31.82  

Table 4
Ablation of direction encoder on the ‘Japanese Gardens Red Sea’ scene.
 Configuration PSNR↑ SSIM↑ LPIPS↓ 
 w/ SHEncdoing 26.44 0.940 0.180  
 w/o SHEncdoing 26.23 0.932 0.201  

as measured by PSNR. However, the greatest advantage is derived 
from our proposed Medium Subnet, which provides the most substan-
tial performance enhancement. This underscores the critical role of 
the Medium Subnet in enhancing the effectiveness of our approach, 
especially when integrated with physics-based image formation models.

Ablation of Direction Encoder We conduct ablation experiments 
on the ‘Japanese Gardens Red Sea’ scene to validate the contributions 
of the direction encoder in medium subnet. The results in Table  4 show 
that using high level spherical harmonic coding directions can improve 
the quality of reconstruction.

4.4. Discussion

The experimental results can explain why we chose to integrate 
MVS with the physical model rather than other possible approaches. 
SeathruNeRF has demonstrated that incorporating imaging models can 
effectively enhance underwater 3D reconstruction. However, due to 
the inherent limitations of NeRF, both training and inference require 
significant time, hindering its practical application. Therefore, we aim 
to develop a method that enables faster reconstruction to meet real-
world usage demands. Building on imaging models, we analyzed their 
structure and found that depth is a crucial component. Accelerating 
depth estimation during training could potentially enhance reconstruc-
tion speed. To address this challenge, we seek a faster depth training 
method. MVSNet (Yao et al., 2018), a MVS method that achieves 3D 
reconstruction through multi-view depth estimation, offers a promising 
direction. However, it primarily focuses on geometric reconstruction 
and relies on ground-truth depth as geometric supervision. Inspired by 
recent works that integrate MVS with NeRF or 3DGS, we adopt only 
the cost volume pipeline of MVSNet for efficient depth estimation. By 
combining this with an underwater imaging model, we aim to infer 
the complete appearance of the scene from images without requiring 
ground-truth depth. Experimental results validate the effectiveness of 
our approach, demonstrating a significant improvement in training 
speed while also enhancing reconstruction metrics.

Interpretability is a crucial aspect of deep learning research, as it 
enhances trust in model predictions and facilitates further improve-
ments (ŞAHiN, Arslan, & Özdemir, 2025). While our primary focus 
is on improving reconstruction efficiency, we acknowledge the impor-
tance of understanding how our model makes decisions. Our approach 
benefits from the integration of MVSNet’s cost volume pipeline, which 
provides explicit depth estimation before scene appearance inference. 
This structure improves transparency by separating geometric and 
photometric reasoning, making the decision-making process more in-
terpretable compared to end-to-end NeRF models. The loss function 
we designed for the underwater environment can also improve Per-
ceptual Similarity Metrics (Güven, Şahin, & Talu, 2024). Additionally, 
incorporating an imaging model further strengthens physical consis-
tency, allowing us to infer scene appearance in a way that aligns with 
real-world imaging principles.
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5. Conclusion

We propose a method for underwater scene reconstruction by inte-
grating MVS with a physical image formation model. By embedding 
the depth estimation capabilities of MVS directly into the imaging 
model, our approach achieves two key objectives: generating high-
quality novel view renderings within scattering media and accurately 
restoring the true colors of underwater scenes. This dual capability 
not only enhances the visual fidelity of rendered scenes but also pro-
vides a more accurate representation of the underwater environment, 
overcoming challenges associated with scattering effects and color 
distortion. Beyond the advancements in rendering quality, a standout 
feature of our methodology is the significant improvement in training 
efficiency than the top NeRF-based method. This efficiency enables 
faster processing times without compromising the accuracy or quality 
of the results, making our approach both practical and effective for 
real-world applications. In summary, the combination of superior ren-
dering quality, efficient training, and adaptability to scattering media 
positions our method as a highly effective solution for underwater scene 
reconstruction.

Although our method represents an improvement, there are still 
the following directions for future improvements in underwater scene 
reconstruction. First, we still face challenges in handling objects with 
similar backgrounds in distant locations. For example, a distant blue 
water feature is mistakenly identified as being closer in our depth map 
(refer to Fig.  4). This issue is attributed in part to the feature extraction 
phase, especially through the FPN, which is influenced by the medium, 
affecting feature extraction accuracy. Future work will therefore focus 
on developing an improved FPN for more accurate feature extraction in 
underwater environments. Second, acquiring high-quality underwater 
scene data sets with removed water poses a challenge, leading to 
constraints on the quality of training data and affecting the accuracy 
of color recovery. In upcoming research endeavors, utilizing datasets 
consisting of underwater images alongside their corresponding water-
removal sets is expected to significantly improve the precision of color 
recovery.
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