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In this paper, a tensor-based real-valued subspace approach for joint direction of
departure (DOD) and direction of arrival (DOA) estimation in bistatic MIMO radar with
unknown mutual coupling is proposed. Exploiting the inherent multidimensional struc-
ture of received data after matched filtering, a third-order measurement tensor signal
model is formulated. For eliminating the effect of the unknown mutual coupling, a sub-
tensor can be extracted from the third-order measurement tensor by taking advantage of
the banded symmetric Toeplitz structure of the mutual coupling matrix (MCM). Then the
sub-tensor can be turned into a real-valued one by forward–backward averaging and
unitary transformation, and a real-valued signal subspace is constructed to estimate the
DOD and DOA by the higher-order singular value decomposition (HOSVD). Owing to
utilize the multidimensional structure of received data and forward–backward averaging
technique, the proposed method has better angle estimation performance than MUSIC-
Like and ESPRIT-Like algorithms. Furthermore, the proposed method is suitable for
coherent targets. Simulation results verify the effectiveness and advantage of the
proposed method.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Angle estimation problem is the most fundamental
aspect in array processing applications [1], and many angle
estimation techniques have been developed for the classical
array processing, such as single-input multiple-output
(SIMO) configuration [2,3]. Recently, a novel array proces-
sing configuration, named as multiple input multiple output
(MIMO) radar, has opened new opportunities in parameter
estimation, especially for joint direction of departure (DOD)
and direction of arrival (DOA) estimation. MIMO radar can
be divided into two classes: statistical MIMO radar [4] and
Wang).
collocated MIMO radar [5]. In the statistical MIMO radar,
both of the transmit and receive antennas are widely spaced
to achieve the spatial diversity gain. The collocated MIMO
radar is composed of colocated transmit and receive anten-
nas, which can form a virtual array with large aperture in
the receiver, provide high-resolution spatial spectral esti-
mation. In this paper, we focus on colocated MIMO radar.

In recent years, direction of departure (DOD) and direc-
tion of arrival (DOA) estimation problem in bistatic MIMO
radar with colocated antennas has attracted more and more
attention, and a lot of algorithms have been presented for
this issue [6–10]. In [6], a two-dimensional spatial searching
technique based on Capon estimator is proposed to estimate
DOD and DOA, where the DOD and DOA are paired auto-
matically. However, high computational burden is due to
the two-dimensional spatial searching. In order to avoid the
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procedure of spatial searching, the estimation of signal
parameters via rotational invariance technique (ESPRIT) is
applied for both the transmit array and receive array in
bistatic MIMO radar [7], then the DOD and DOA can be
achieved by two independent ESPRITs. Thus, the additional
pairing procedure is required. Another ESPRIT algorithm
with automatic pairing is presented in [8], which provides
comparable angle estimation performance with lower com-
putational complexity compared with the method in [7].
Moreover, exploiting the characteristic of non-circular sig-
nals, the conjugate ESPRIT (C-ESPRIT) and unitary conjugate
ESPRIT are proposed in [9,10], which provide better angle
estimation performance than ESPRIT-based methods. On
the other hand, considering the effect of mutual coupling
in both the transmit array and receive array, the accuracy of
angle estimation in [6–10] will be degraded remarkably. In
order to solve this issue, the MUSIC-Like algorithm and
ESPRIT-Like algorithm are presented to estimate the angle
and mutual coupling for bistatic MIMO radar in [11,12],
respectively. However, all the methods mentioned above are
required to stack the received data into a special structure
matrix, which ignore the multidimensional structure inher-
ence in the received data. Then the signal subspace or noise
subspace can be estimated by eigenvalue decomposition
(EVD) of the covariance matrix or singular value decom-
position (SVD) of the received data. In [13,14], the multi-
dimensional structure of the received data in bistatic MIMO
radar is considered for improving the angle estimation
performance. Compared with conventional ESPRIT algo-
rithm, the multi-SVD technique in [14] provides better angle
estimation, especially in low SNR region and limited snap-
shots. Unfortunately, the method in [14] is not suitable for
the angle estimation in the presence of mutual coupling.

In this paper, we proposed a tensor-based real-valued
subspace approach for joint DOD and DOA estimation in
bistatic MIMO radar with unknown mutual coupling. Firstly,
a third-order measurement tensor signal model is formu-
lated by utilizing the multidimensional structure inherence
in received data after matched filters. Then exploiting the
special structure of the mutual coupling matrix (MCM), a
sub-tensor without the effect of the mutual coupling is
extracted from the third-order measurement tensor, and
this sub-tensor can be mapped into a real-valued one by
forward–backward averaging and unitary transformation.
Finally, the higher order SVD (HOSVD) tensor decomposi-
tion technique is used to estimate the real-valued signal
subspace. The DOD and DOA can be obtained by combining
with the real-valued subspace based methods, such as
unitary MUSIC and unitary ESPRIT, where the DOD and
DOA are paired automatically. Due to exploit of the multi-
dimensional structural inherence in received data and the
forward–backward averaging technique, the proposed
method provides better angle estimation performance than
both MUSIC-Like and ESPRIT-Like algorithms. Moreover, the
proposed method is suitable for coherent targets.

Notation: �ð ÞH, �ð ÞT, �ð Þ�1, and �ð Þn denote conjugate-
transpose, transpose, inverse, conjugate, respectively. �
and � denote the Kronecker product operation and Kha-
tri–Rao product operation. Toeplitz frg denotes the sym-
metric Toeplitz matrix constructed by the vector r. diag ð�Þ
denotes the diagonalization operation and blkdiagfr1; r2g
denotes a block-diagonal matrix with r1 and r2 being its
diagonal submatrices. IK denotes the K � K identity matrix,
and 0L�K is the L� K zero matrix.

2. Tensor basics and signal model

Tensor basics: First, we introduce several tensor opera-
tions, which refer to [15,16].

Definition 1 (Matrix unfolding). Let XACI1�I2⋯�IN be a
tensor, and the mode-n matrix unfolding of a tensor X is
denoted by X½ �ðnÞ. The ði1; i2;…;1NÞth element of X maps to
the ðin; jÞ th element of X , where j¼ 1þ PN

k ¼ 1;kanðik�1ÞJk
with Jk ¼∏k�1

m ¼ 1;manIm.

Definition 2 (Mode-n tensor-matrix product). The mode-n
product of XACI1�I2�⋯�IN with a matrix AACJn�In is
denoted by Y ¼X�nA, where YACI1�I2�⋯�In� 1�Jn�Inþ 1�⋯�IN

and Y½ �i1 ;i2 ;…;in� 1 ;jn ;inþ 1 ;…;iN ¼
PIn

in ¼ 1 X½ �i1 ;i2 ;…;in� 1 ;in ;inþ 1 ;…;iN : A½ �jn ;in

Definition 3 (The properties of the mode product). The
properties of the mode product are shown as follow [16]:

X�nA�mB¼X�mB�nA; man
X�nA�nB¼X�nðBAÞ ð1Þ

X�1A1�2A2 �⋯�NAN½ �ðnÞ
¼An: X½ �ðnÞ: AN � …: � Anþ1 � An�1 � ‥‥ � A2 � A1

� �T
ð2Þ

Tensor-based signal model: Consider a narrowband bistatic
multiple-input multiple-output (MIMO) radar system
equipped with M transmit antennas and N receive antennas.
Both of the transmit array and receive array are composed of
half-wavelength spaced uniform linear arrays (ULA). At the
transmit array, M antennas are used to transmit M orthogonal
narrowband waveforms S¼ s1;½ s2;…; sM�TACM�J , where J is
the number of samples per pulse period. All the targets are
modeled as a point-scatterer in the far-field, and we assume
that there exists P uncorrelated targets in the same range-bin
of interest. The direction of departure (DOD) and direction of
arrival (DOA) of the pth target can be denoted as φp and θp,
respectively. Consider the effect of mutual coupling in both
transmit array and receive array, and it is also assumed that the
number of nonzeros mutual coupling coefficients of both the
transmit and receive arrays is Kþ1 with minfM;Ng 42 K .
Then the mutual coupling matrices of the transmit and receive
arrays can be modeled as banded symmetric Toeplitz matrices,
which can be expressed as [11,12]

Ct ¼ toeplitzf½ct0; ct1;…; ctK ;0;‥‥;0�gACM�M

Cr ¼ toeplitzf½cr0; cr1;…; crK ;0;‥‥;0�gACN�N ð3Þ
where cik; ði¼ r; t; k¼ 0;1;…;KÞ is the mutual coupling coeffi-
cient, which is a factor concerned with the distance between
two elements [11] and satisfied with 0o jctK jo
⋯o jct1jo jct0j ¼ 1. Then the output of the receive array can
be written as [11,12]

XðtlÞ ¼ ½CrAr�Σl CtAt½ �TSþWðtlÞ; l¼ 1;2;…; L ð4Þ

where XðtlÞACN�K is the received data for the lth pulse period,
L is the number of pulses. Ar ¼ ½arðθ1Þ;…; arðθPÞ� and
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At ¼ ½atðφ1Þ;…; atðφPÞ� are the receive steering matrix and the
transmit steering matrix, respectively. arðθpÞ ¼ 1; ejπ sinθp ;…;

�
ejπðN�1Þ sinθp �T and atðφpÞ ¼ 1; ejπ sinφp ;…;

h
ejπðM�1Þ sinφp �Tðp¼

1;2;…; PÞ are the receive steering vector and the transmit
steering matrix, respectively. Σl ¼ diagðclÞ is composed of cl ¼
β1e

j2πf d1l;β2e
j2πf d2 l;…;βPe

j2πf dP l
� �T

, βp

n oP

p ¼ 1
and f dp

n oP

p ¼ 1

are the RCS fading coefficients and the targets Doppler
frequency, respectively. In this paper, we consider that the

RCS fading coefficients βp

n oP

p ¼ 1
are constant in all pulses,

whichmeans that the RCS of all targets is the Swerling I model.
W is assumed to be temporally and spatially white, and
uncorrelated from the targets. Exploiting the orthogonality of

the transmitted waveforms shown as ð1=JÞSSH ¼ IM , Eq. (2) is
right multiplied by ð1=JÞSH, then the output of matched filters
is

YðtlÞ ¼ ½CrAr�Σ CtAt½ �TþNðtlÞ; l¼ 1;2;…; L ð5Þ

where YðtlÞ ¼ ð1=JÞXðtlÞSHACN�M and N¼ ð1=JÞWSH. Based
on the matrix unfolding of tensor in Definition 1, the received
data matrix in Eq. (5) for each pulse can be considered as a
slice along the direction of pulse (the third-dimension). Then
we stack the matrices YðtlÞðl¼ 1;2;…; LÞ along the third-
dimension to built the N �M � L measurement tensor Y.
Exploiting the matrix unfolding technique to tensor Y, we
have

Y½ �Tð3Þ ¼ ½CtAt � � ½CrAr �SþN ð6Þ

where S ¼ ½c1; c2;…; cl�ACP�L and N ¼ ½vecðNðt1ÞÞ; …:;

vecðNðtLÞÞ�ACMN�L.

Remark 1. As shown in [11,12], the subspace methods are
based on Eq. (6), which indicates that these methods only
use “one-dimensional” information and ignore the multi-
dimensional structure of the measurement tensor Y. Thus,
the angle estimation performance is limited with lower SNR
and pulses. Additionally, the method in [13] is not suitable
anymore owing to the mutual coupling.

3. Tensor-based real-valued subspace approach for angle
estimation with unknown mutual coupling

Exploiting the structure characteristic of both the mutual
coupling matrices Cr and Ct in Eq. (3), two selection
matrices are defined as [12]

J1 ¼ ½0ðM�2KÞ�K IM�2K 0ðM�2KÞ�K � ð7aÞ

J2 ¼ ½0ðN�2KÞ�K IN�2K 0ðN�2KÞ�K � ð7bÞ
Then, multiplying the selection matrices J2 and J1 on the

left and right sides of YðtlÞðl¼ 1;2;…; LÞ, respectively, we
have

YðtlÞ ¼ J2YðtlÞJ1; l¼ 1;2;…; L ð8Þ
and the ðn;mÞ element of YðtlÞ can be expressed as

YðtlÞ
� �

n ;m ¼
XP
p ¼ 1

sp;lνrpνtpejπðn�1Þ sinθp ejπðm�1Þ sinφp þ NðtlÞ
� �

n ;m

ð9Þ
where 1 ⪯ n⪯ N ¼N�2K , 1 ⪯m⪯M ¼M�2K and min
fNðM�1Þ; MðN�1ÞgZP.sp;l ¼ βpe

j2πf dpl,-

νrp ¼
PK

k ¼ �K crjkje
jπðkþKÞ sin θp ,

νtp ¼
PK

k ¼ �K ctjkje
jπðkþKÞ sin φp and NðtlÞ ¼ J2NðtlÞJ1. According

to Eq. (7a) and (7b), it can be concluded that ν¼ PP
p ¼ 1 νrpνtp is

constant for each element of YðtlÞ, which indicates that the effect
of mutual coupling is eliminated by the linear transformation in
Eq. (8). Then Eq. (8) can be rewritten as

YðtlÞ ¼ ArΣA
T
t þNðtlÞ l¼ 1;2;…; L ð10Þ

where Ar and A t are the first N and M rows of Ar and At ,

respectively. Σ ¼ diagð½νβ1e
j2πf d1 l;νβ2e

j2πf d2l;…;νβPe
j2πf dpl�Þ.

The operation in Eq. (8) is only considered for one slice of the
measurement tensor Y. Now, we extend the linear transforma-
tion to the measurement tensor Y. According to Definition 2, a
novel measurement sub-tensor Y can be extracted from the
measurement tensor Y, which is shown as

Y ¼Y�1J2�2J1 ð11Þ

After exploiting the operation in Eq. (11), each slice of Y
along the direction of pulse corresponds to the data
YðtlÞðl¼ 1;2;…; LÞ in (10). Thus, the measurement sub-
tensor data Y is robust in the presence of mutual coupling.
Then, exploiting the forward–backward averaging techni-
que to the sub-tensor, we have

Z ¼ ½Y⊔3ðYn�1ΠN�2ΠM�3ΠLÞ� ð12Þ

where ½A⊔3B� denotes the concatenation of A and B along
the nth mode and Πn is the n� n exchange matrix having
ones on its antidiagonal and zeros elsewhere. After using
the forward–backward averaging technique, the tensor Z is
centro-Hermitian [17], and it can be turned into the set of
real-valued tensors by using unitary transformation. The
real-valued tensor can be obtained as

Zrv ¼Z�1U
H
N�2U

H
M�3U

H
2L ð13Þ

where U2Kþ1 is unitary matrix and defined as

U2Kþ1 ¼
1ffiffiffi
2

p
IK 0 jIK

01�K
ffiffiffi
2

p
01�K

ΠK 0 � jΠK

2
64

3
75 ð14Þ

and U2K is easily obtained from U2Kþ1 by omitting its center
row and center column. Then the HOSVD ofZrv is given by [14]

Zrv ¼Grv�1E1�2E2�3E3 ð15Þ

where GrvARN�M�2L is the core tensor. E1ARN�N , E2ARM�M

and E3AR2L�2L are real-valued unitary matrices, which are
composed of the left singular vectors of the i-mode matrix
unfolding of Zrv as Zrv½ �ðiÞ ¼ EiΛiV

H
i ði¼ 1;2;3Þ, respectively.

Since tensor Zrv is rank-P, the real-valued subspace tensor of
Zrv can be defined by using truncated HOSVD of Zrv, which is
expressed as

Zs ¼Gs�1Es1�2Es2 ð16Þ

where Gs ¼Zrv�1E
H
s1�2E

H
s2�3E

H
s3 is the reduced core tensor,

Esiði¼ 1;2;3Þ contains the first P dominant singular vectors of
Ei. Insertion of Gs into Eq. (16), and according to Eq. (1), we
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have

Zs ¼Zrv�1Es1E
H
s1�2Es2E

H
s2�3E

H
s3 ð17Þ

Then based on Eq. (2), the real-valued signal subspace can be
given as

Es ¼ Zs½ �Tð3Þ ¼ ðEs2E
H
s2 � Es1E

H
s1ÞZEn

s3 ð18Þ

where Z¼ Zrv½ �Tð3Þ.

Lemma 1. The real-valued signal subspace Es and real-valued

steering matrix UH
MA t � UH

NAr are spanned the same subspace,

i.e., Es ¼ ðUH
MA t � UH

NArÞT, where T is a full-rank matrix.

Proof. Due to Zrv½ �ð3Þ ¼ E3Λ3V
H
3 , the SVD of Z can be

expressed as Z¼ Zrv½ �Tð3Þ �Vn

3sΛ3sE
T
3s. Then inserting

Z�Vn

3sΛ3sE
T
3s into Eq. (18), we have

Es ¼ ðEs2E
H
s2 � Es1E

H
s1ÞVn

3sΛ3s ð19Þ
According to Eqs. (13)–(16), it can be concluded the fact that
the real-valued Es1 and Es2 span the same signal subspace as

the real-valued transmit steering matrix Â t ¼UH
MA t and

real-valued receive steering matrix Âr ¼UH
NAr . Additionally,

the real-valued signal subspace Vn

3s can be expressed as

Vn

3s ¼ ðÂ t � ÂrÞT1, where T1 is full-rank matrices. Addition-
ally, the well-known characteristic of between the signal
subspace and steering matrix can be shown as

Es1E
H
s1 ¼ Âr Â

H
r Âr

� ��1
Â

H
r and Es2E

H
s2 ¼ Â t Â

H
t Â t

� ��1
Â

H
t . Thus,

inserting Vn

3s ¼ ðÂ t � ÂrÞT1 into Eq. (19), we have

Es ¼ ðEs2E
H
s2 � Es1E

H
s1ÞðÂ t � ÂrÞT1Λ3s

¼ ðEs2E
H
s2Â tÞ � ðEs1E

H
s1ÂrÞT1Λ3s

¼ ½Â t Â
H
t Â t

� ��1
Â

H
t Â t � � ½Âr Â

H
r Â r

� ��1
Â

H
r Âr�T1Λ3s

¼ ðÂ t � ÂrÞT1Λ3s ð20Þ
Since both T1 and Λ3s are full-rank matrix, T¼ T1Λ3s is full-
rank matrix. Up to now, Lemma 1 is completely proved.
According to Lemma 1, it can be concluded that the real-
valued signal subspace Es can be used to estimate DOD and
DOA by combining with real-valued subspace methods,
such as unitary MUSIC [18] and unitary ESPRIT [19]. The
detail will be shown in the following.
Two-dimensional unitary MUSIC algorithm: Exploiting the

orthogonality characteristic between the real-valued noise
subspace and the real-valued steering vector, a two-
dimensional unitary MUSIC spatial peak searching function
can be constructed for DOD and DOA estimation, which is
shown as

P φ;θ
� �¼ 1

UH
MatðφÞ � UH

NarðθÞ
h iH

Fn½UH
MatðφÞ � UH

NarðθÞ�
ð21Þ

where atðφÞ and arðθÞ are composed of the fist N and M
elements of atðφÞ and arðθÞ, respectively. Fn ¼ IN�M �EsoEH

so,
where Eso is the orthogonal basis of Es. Then the DOD and
DOA can be obtained by searching the spatial peak of Eq.
(21) and can be paired automatically.
Unitary ESPRIT algorithm: In order to adopt the uni-

tary ESPRIT algorithm for DOD and DOA estimation, the
real-valued signal subspace Es can be divided into four
parts, and there exist the following rotational invariance
equation:

Γ2Es ¼Γ1EsΨt ; Γ4Es ¼Γ3EsΨr ð22Þ
where Γ1 ¼ RefðUM �1 � UN ÞJ

φ
2 ðUM � UN Þg and Γ2 ¼ Im

fðUM �1 � UN ÞJ
φ
2 ðUM � UN Þg with Jφ2 ¼ ½0N ðM �1Þ�N ; IN ðM �1Þ�,

Γ3 ¼ RefðUM � UN �1ÞJθ4ðUM � UN Þg and Γ4 ¼ ImfðUM �
UN �1ÞJθ4ðUM � UN Þg with Jθ4 ¼ IM � ½0ðN �1Þ�1; IðN �1Þ�. Ψt ¼
ΥΦtΥ

�1 and Ψr ¼ ΥΦrΥ
�1 are the rotational invariance

matrix, which contain the information of DOD and DOA,
respectively, where Φt ¼ diagð½ tan ðπ sin ðφ1Þ= 2Þ; tan ðπ
sin ðφ2Þ=2Þ;…; tan ðπ sin ðφPÞ=2ÞÞ� and Φr ¼ diagð½ tan
ðπ sin ðθ1Þ=2Þ, tan ðπ sin ðθ2Þ=2Þ;…; tan ðπ sin ðθPÞ=2ÞÞ�. Then
Ψt and Ψr can be estimated by using least squares (LS) or the
total least squares (TLS) algorithm in Eq. (22). In order to avoid
the procedure of pairing operation, the pairing strategy in [20]
can be utilized, which can be expressed as

Ψtþ jΨr ¼ Υ ðΦtþ jΦrÞΥ �1 ð23Þ
The diagonal matrix Φt and Φt can be obtained from the real
and imaginary parts of the eigenvalues of Ψtþ jΨr . Then the
DOD and DOA are paired automatically, and the DOD and DOA
can be derived as

φ̂p ¼ arcsinð2arctanðΥ tpÞ=πÞ; p¼ 1;2;…; P ð24aÞ

θ̂p ¼ arcsinð2arctanðΥ rpÞ=πÞ; p¼ 1;2;…; P ð24bÞ
where Υ tp and Υ rp are the pth diagonal element ofΦt andΦt ,
respectively. □

4. Related remarks and CRB
Remark 2. As shown in (19), the matrix-based subspace-
methods [11,12] use the signal subspace Vn

3s to estimate the
DOD and DOA, but the proposed method use the signal
subspace Es instead of Vn

3s. In the absence of noise or the
target number P is larger than M and N , the signal subspace
Es and Vn

3s are same owing to both of Es1E
H
s1 and Es2E

H
s2 are

unit matrix. Otherwise, they are different and the estima-
tion of Es is more accuracy than Vn

3s. The main reason is that
exploiting the multi-dimensional structure inherence in the
received signal, the proposed method uses the HOSVD
technique to suppress the noise more effectively compared
with the traditional SVD/EVD approach. Thus, the angle
estimation performance can be improved in the proposed
method.

Remark 3. The computational complexity of the proposed
method is analyzed as following. As shown in [21], for a
M�N complexity matrix, the computational complexity of
the truncated SVD to rank K is O(MNK). On other hand, since
the computational complexity of one multiplication
between two complex-valued matrix generally requires
four times that of between two real-valued ones, the
computational complexity of real-valued operation can
reduce about 75%. In the proposed method, the signal
subspace Es can be estimated by three truncated SVDs of
matrix unfolding of the real-valued sub-sensor Zrv. The
computational complexity of the proposed method is
Oð3=4MNPÞ, while the matrix-based subspace methods
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(such as ESPRI-Like [12]) need OðMNPÞ computational
complexity to estimate the complex-valued signal subspace.
Thus, the proposed method has similar computational
complexity with the matrix-based subspace methods.

Cramer–Rao bound (CRB): According to [12], the CRB of
angle estimation can be defined as

CRB¼ σ2

2
Jηη� JγηJ

�1
γγ JTγη

h i�1
ð25Þ

where

Jηη ¼
XL
l ¼ 1

RefDH
l Γ?

A Dlg; Jγη ¼
XL
l ¼ 1

RefDH
l Γ?

A Hlg; Jγγ ¼
XL
l ¼ 1

RefHH
l Γ?

A Hlg;

ð26Þ

in which Γ?
A ¼ IMN� 0A½ ́ AH 0A�0AH with 0 A ¼ ½CtAt � � ½CrAr�.

Dl and Hl ar expressed as Dl ¼ ∂ �b1
∂φ1

;…;
h

∂ �bP
∂φP

; ∂
�b1

∂θ1
;…; ∂

�bP
∂θP

� and

Hl ¼ ∂C
∂at1

;…; ∂C
∂atK

;
h�

∂C
∂ar1

;…; ∂C
∂arK

� � 1; j½ �ÞGl, respectively, where

�bp is the pth column of AΣl, A¼ At � At , C¼ Ct � Cr ,
ctk ¼ atkþ jbtk, crk ¼ arkþ jbrk and Gl ¼ blkdiagfAcl;…;Acl|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}4Kg.
5. Simulation results

In this section, some numerical simulations are pre-
sented to verify the effectiveness and advantages of the
proposed method algorithm. The MUSIC-Like algorithm
[11], ESPRIT-Like algorithm [12] and the CRB are used to
compare with the proposed method. In the following cases,
a narrowband bistatic MIMO radar with M¼8 transmit
antennas and N¼10 receive antennas is used. At the
transmit side, the mth transmitted waveform is the mth
row of SACJ�J , where S ¼ ð1þ jÞ=

ffiffiffi
2

p
HJ , and HJ is the J � J

Hadamard matrix with J¼256. Unless stated otherwise, it is
assumed that the number of uncorrelated targets is known
as P¼3, three widely spaced targets are located at ðφ1;θ1Þ ¼
ð�151;251Þ, ðφ2;θ2Þ ¼ ð01;51Þ and ðφ3;θ3Þ ¼ ð201; �201Þ. The
root mean square error (RMSE) is used for angle estimation
performance evaluation, which is calculated by the formula

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2QP

XP
p ¼ 1

XQ
i ¼ 1

φ̂p;i�φp

� �2
þ θ̂p;i�θp

� �2

 �vuut ð27Þ

where φ̂p;i and θ̂p;i are the estimation of DOD φp and DOA θp
for the ith Monte Carlo trial, respectively. Q is the number of
the Monte Carlo trials. The signal-to-noise ratio (SNR) is
defined as SNR¼10 log10ð

PL
l ¼ 1 J ½CrAr �Σl CtAt½ �TSJ2F=

PL
l ¼ 1

JWðtlÞJ2F ). The spatial grid of the MUSIC-based methods is
0:0011 and Q¼200 is used in the following simulations.

In the first simulation, we first investigate the RMSE of
angle estimation for P¼3 widely spaced targets with the
following two cases: (1) K¼1 with ½ct0; ct1� ¼ ½1;0:2þ
j0:0061�g and ½cr0; cr1� ¼ ½1;0:15þ j0:0251�. (2) K¼2 with
½ct0; ct1; ct2� ¼ ½1;0:7þ j0:002;0:2þ j0:061� and ½cr0; cr1; cr2� ¼
½1;0:6þ0:j0121;0:15þ j0:0251�. The number of pulses is
L¼50. Fig. 1 shows the RMSE of different methods versus
SNR for the case (1), and the RMSE of different methods ver-
sus SNR in case (2) is shown in Fig. 2. As shown in Figs. 1
and 2, compared with both of ESPRIT-Like and MUSIC-Like
algorithms, the angle estimation of the proposed met-
hod is superior and closer to CRB. The reason is that
the multidimensional structure of the received data and
forward–backward averaging technique are taken into
account, which allow us to suppress the noise more effi-
ciently than SVD/EVD technique. Furthermore, it can be
seen that the MUSIC-Like algorithm provides better angle
estimation performance than ESPRIT-Like algorithm at high
SNR region for the case (1). But it fails to work in case (2)
owing to angle ambiguity, and the reason is shown in [12].

The second simulation is carried out to evaluate the
angle estimation performance for P¼2 closely spaced tar-
gets, where two targets are located at ðφ1;θ1Þ ¼ ð51;01Þ and
ðφ2;θ2Þ ¼ ð101; �51Þ. The number of pulses is L¼50 and the
mutual coupling is set as in case (1). Fig. 3 shows that the
RMSE of different methods versus SNR for two closely
targets. As seen in Fig. 3, compared with ESPRIT-Like and
MUSIC-Like algorithms, the proposed methods (based on
unitary MUSIC and unitary ESPRIT) provide better angle
estimation performance, especially at low SNR region,
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which indicates that the proposed methods have higher
resolution than both of ESPRIT-Like and MUSIC-Like
algorithms.

The third simulation is carried out to evaluate the RMSE
of different methods versus pulses for P¼3 widely spaced
targets, where SNR is 5 dB and the mutual coupling is set as
in case (1). It can be seen from Fig. 4 that the angle
estimation performance of the proposed methods (based
on unitary MUSIC and unitary ESPRIT) is better than both
ESPRIT-Like and MUSIC-Like algorithms with lower pulses.
In larger pulse number case, the proposed method (based
on unitary ESPRIT) provides almost same performance with
ESPRIT-Like algorithm, and the MUSIC-Like algorithm has
slightly better angle estimation performance than the
proposed method based on unitary MUSIC-Like algorithm.
However, the MUSIC-Like algorithm is only effective for
small number of the nonzero mutual coupling coefficients,
which has been shown at the first simulation.

The fourth simulation considers the probability of suc-
cessful detection of different methods for P¼3 widely
spaced targets, where the number of pulses is L¼50 and
the mutual coupling is set as in case (1). All targets can be
seen as successful detection when the absolute of DOD and
DOA for all targets is within 0.11. As seen in Fig. 5, all the
methods show the 100% successful detection at high SNR
region. The probability of successful detection for each
method begins to drop at a certain point, which is defined
as SNR threshold. It also can be seen that the proposed
methods (based on unitary MUSIC and unitary ESPRIT)
provide lower SNR threshold than MUSIC-Like and ESPRIT-
Like algorithms. This is a direct result of the improved
accuracy in the proposed method.
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The fifth simulation considers the angle estimation
performance of different methods for three widely spaced
coherent targets with L¼50, where the first two targets are
coherent but uncorrelated with the third target, and the
mutual coupling is set as in case (1). As seen in Fig. 6, it is
indicated thatboth of MUSIC-Like and ESPRIT-like algo-
rithms fail to work with two coherent targets case. How-
ever, the proposed methods (based on unitary MUSIC and
unitary ESPRIT) are effective and provide accurate angle
estimation performance, and the angle estimation perfor-
mance of them is close to CRB.
6. Conclusion

In this paper, we proposed a tensor-based real-valued
subspace approach for angle estimation in bistatic MIMO
radar with unknown mutual coupling. The sub-tensor with-
out the effect of mutual coupling can be extracted from the
tensor data by utilizing the special structure of mutual
coupling matrix with uniform linear array, then a signal
subspace obtained from the real-valued tensor is formu-
lated to estimate the DOD and DOA. Due to exploit of the
multidimensional structural information of the received
data and forward–backward averaging technique, the pro-
posed method provides better angle estimation perfor-
mance than MUSIC-Like and ESPRIT-Like algorithms at
small pulses case and lower SNR case, and can be suitable
for coherent targets. Numerical examples are presented to
confirm the advantages of the proposed method.
Acknowledgements

This work is supported by the New Century Excellent
Talents Support Program (NCET-11-0827), China Postdoctoral
Science Foundation Grant (2014M550182), Fundamental
Research runs for the Central Universities (HEUCFX-41308),
Heilongjiang Postdoctoral Special Fund (LBH-TZ0410)and
Innovation of Science and Technology Talents in Harbin
(2013RFXX-J016).
References

[1] H. Krim, M. Viberg, Two decades of array signal processing research:
the parametric approach, IEEE Signal Process. Mag. 13 (4) (1996)
67–94.

[2] R. Roy, T. Kailath, ESPRIT—estimation of signal parameters via rota-
tional invariance techniques, IEEE Trans. Acoust., Speech Signal
Process. 37 (3) (1989) 955–984.

[3] R.O. Schmidt, Multiple emitter location and signal parameter estima-
tion, IEEE Trans. Antennas Propag. 34 (3) (1986) 276–280.

[4] A.M. Haimovich, R. Blum, L. Cimini, MIMO radar with widely sepa-
rated antennas, IEEE Signal Process. Mag. 25 (1) (2008) 116–129.

[5] J. Li, P. Stoica, MIMO radar with colocated antennas, IEEE Signal
Process. Mag. 24 (5) (2007) 106–114.

[6] H. Yan, J. Li, G. Liao, Multitarget identification and localization using
bistatic MIMO radar systems, EURASIP J. Adv. Signal Process. (2008), 8,
http://dx.doi.org/10.1155/2008/283483 (Article ID 283483).

[7] C. duofang, C. Baixiao, Q. Guodong, Angle estimation using ESPRIT in
MIMO radar, Electron. Lett. 44 (12) (2008) 770–771.

[8] J. Chen, H. Gu, W. Su, Angle estimation using ESPRIT without pairing
in MIMO radar, Electron. Lett. 44 (24) (2008) 1422–1423.

[9] W. Wang, X. Wang, H.R. Song, Y.H. Ma, Conjugate ESPRIT for DOA
estimation in monostatic MIMO radar, Signal Process. 93 (2013)
2070–2075.

[10] W. Wang, X. Wang, X. Li, Y. Ma, Conjugate unitary ESPRIT algorithm
for bistatic MIMO radar, IEICE Trans. Electron. 96 (1) (2013) 124–126.

[11] X. Liu, G. Liao, Direction finding and mutual coupling estimation for
bistatic MIMO radar, Signal Process. 92 (2) (2012) 522–527.

[12] Z. Zheng, J. Zhang, J. Zhang, Joint DOD and DOA estimation of bistatic
MIMO radar in the presence of unknown mutual coupling, Signal
Process. 92 (12) (2012) 3039–3048.

[13] D. Nion, N.D. Sidiropoulos, Tensor algebra and multidimensional
harmonic retrieval in signal processing for MIMO radar, IEEE Trans.
Signal Process. 58 (11) (2010) 5693–5705.

[14] Y. Cheng, R. Yu, H. Gu, W. Su, Multi-SVD based subspace estimation to
improve angle estimation accuracy in bistatic MIMO radar, Signal
Process. 93 (7) (2013) 2003–2009.

[15] L.D. Lathauwer, B.D. Moor, J. Vandewalle, A multilinear singular value
decomposition, SIAM J. Matrix Anal. Appl. 21 (4) (2000) 1253–1278.

[16] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM
Rev. 51 (3) (2009) 455–500.

[17] M. Haardt, F. Roemer, G. Del Galdo, Higher-order SVD-based subspace
estimation to improve the parameter estimation accuracy in multi-
dimensional harmonic retrieval problems, IEEE Trans. Sginal Process.
56 (7) (2008) 3198–3213.

[18] M. Pesavento, A.B. Gershman, M. Haardt, Unitary root-MUSIC with a
real-valued eigendecomposition: a theoretical and experimental per-
formance study, IEEE Trans. Sginal Process. 48 (5) (2000) 1306–1314.

[19] M. Haardt, J.A. Nossek, Unitary ESPRIT: how to obtain increased
estimation accuracy with a reduced computational burden, IEEE
Trans. Sginal Process. 43 (5) (1995) 1232–1242.

[20] M.D. Zoltowski, M. Haardt, C.P. Mathews, Closed-form 2-D angle
estimation with rectangular arrays in element space or beamspace
via unitary ESPRIT, IEEE Trans. Sginal Process. 42 (2) (1996) 316–328.

[21] G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, 1996.

http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref1
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref1
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref1
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref2
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref2
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref2
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref3
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref3
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref4
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref4
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref5
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref5
http://dx.doi.org/10.1155/2008/283483
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref7
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref7
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref8
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref8
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref9
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref9
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref9
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref5456
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref5456
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref11
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref11
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref12
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref12
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref12
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref13
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref13
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref13
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref14
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref14
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref14
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref15
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref15
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref16
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref16
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref17
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref17
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref17
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref17
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref18
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref18
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref18
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref19
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref19
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref19
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref20
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref20
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref20
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref21
http://refhub.elsevier.com/S0165-1684(15)00121-8/sbref21

	Tensor-based real-valued subspace approach for angle estimation in bistatic MIMO radar with unknown mutual coupling
	Introduction
	Tensor basics and signal model
	Tensor-based real-valued subspace approach for angle estimation with unknown mutual coupling
	Related remarks and CRB
	Simulation results
	Conclusion
	Acknowledgements
	References




