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Abstract
Asan alternative to existingmethods,wedesign a transform-domain algorithm to avoid
the computational cost of a two-dimensional (2-D) spectral peak search when address-
ing the problem of joint azimuth and elevation directions-of-arrival (DOAs) estimation
via an L-shaped array. Motivated by the linear prediction property of the signal cross-
covariance matrix, the 2-D DOA estimation problem is equivalently converted into a
2-D frequency estimation problem.With the QR decomposition technique, the closed-
form solutions in the transformdomainwith respect to the azimuth and elevation angles
are successively estimated using the weighted least squared method as the solver, and
it is shown that the proposed scheme achieves automatically pairing while permit-
ting fast implementation. Simulations are presented to verify the effectiveness of the
proposed method by comparison with several 2-D DOA estimators as well as the
Cramér–Rao lower bound.
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1 Introduction

Direction-of-arrival (DOA) estimation for multiple narrowband sources has been
important for decades due to its broad applications in radar, sonar, radio astron-
omy, and mobile communications [3,4,10,13,19], and so forth. Many DOA estimators
with super-resolution performance have been proposed, but most of them address
one-dimensional (1-D) DOA estimation problems, such as [13]. In practice, when an
airborne or spaceborne array is employed to observe ground-based sources, the angle
of each source is two-dimensional (2-D) in nature, and the corresponding angular
components are known as the azimuth and elevation angles. Therefore, 1-D DOA
estimators may fail to deal with the joint azimuth and elevation angles estimation
problem.

To tackle this 2-D DOA estimation problem, various methods have been devel-
oped, such as MUSIC-based method [20] and ESPRIT-based algorithms [8]. These
subspace-based algorithms achieve satisfactory estimation performance for various
array geometries, including a uniform linear array (ULA), a rectangular array and an
L-shaped array. Nevertheless, most of them require a multidimensional search, result-
ing in a high computational cost. For this reason, a fast computational method that
does not require solving for the roots of a 2-D polynomial or searching in 2-D space,
called the matrix enhancement and matrix pencil (MEMP) method [6], has been pro-
posed to deal with the 2-D frequency estimation problem. In this method, an enhanced
matrix is constructed from data samples, and 2-D sinusoids are then extracted from
the principal eigenvectors of the enhanced matrix via the matrix pencil approach.

In [17], a propagator method (PM) has also been developed to reduce the compu-
tational complexity; this method requires only linear operations on signal subarrays
instead of singular value decomposition (SVD) as in subspace-based methods. In [18],
a 2-D DOA estimator based on an L-shaped array was designed by using a param-
eter finding process similar to MUSIC. However, both of these methods require an
extra paired-matching process, which is also true of [14,16]. The work presented in
[17] achieves effective pair matching using a signal subspace extension, in which
each L-shaped array is composed of two different ULAs. To achieve pair matching,
a novel sparse representation-based method [21] for wideband 2-D DOA estimation
in the frequency domain has been presented by characterizing individual wideband
sources as unique planes of temporal–spatial array data to enable the projection of 2-D
direction information into 1-D space. However, the capabilities of this approach are
limited for wideband source estimation. The maximum likelihood (ML) method [9]
for 2-D localization exhibits optimal performance with relatively lower complexity,
and simulation results show that the ML method attains the Cramér–Rao lower bound
(CRLB) with super-resolution performance unlike other existing approaches. Other
methods for 1-D DOA estimation [11,12,23] and 2-D DOA estimation [2,22,24] have
also been proposed to solve the DOA estimation problem.

In this paper, a closed-form 2-DDOAestimator with low computational complexity
is proposed, along with the resultant 2-D frequency estimation problem. To deal with
the unpair matching problem for joint azimuth and elevation angles, the QR decompo-
sition technique is applied to the autocorrelation covariancematrix of the received data
such that 2-D direction information can be decomposed into 1-D frequency estimates
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Fig. 1 L-shaped array configuration for 2-D DOA estimation

with respect to (w.r.t.) the elevation angle. Benefiting from the linear prediction (LP)
property of signal cross-covariance matrix [5], we address the resulting 1-D frequency
estimation problem using the weighted least squared (WLS) method, thus obtaining a
closed-form solution w.r.t. the elevation angle. Subsequently, with the help of a con-
structed steeringmatrix for the estimated elevation angle, the remaining 1-D frequency
problem w.r.t. the azimuth angle is solved in the same manner.

The main contributions of this work are summarized as follows. First, motivated
by the LP property of the signal cross-covariance matrix, the 2-D DOA estimation
problem is successfully converted into the corresponding 2-D frequency estimation
problem, for which closed-form estimates are obtained instead of performing iterative
approximation. Second, a multidimensional spectral search is not required, which, in
some sense, implies that the proposed scheme is computationally efficient. Further-
more, the proposed solution offers more accurate DOA estimation performance and
achieves automatic pair matching between the azimuth and elevation angles.

2 Signal Model

Consider an L-shaped array equipped with identical M sensors along the x-axis and
N identical sensors along the z-axis, as shown in Fig. 1. The interelement spacing d
is equal to half the wavelength. Without loss of generality, assume that K narrowband
sources with signal carrier wavelength λ from the far-field impinge onto the L-shaped
array fromunknown and distinct angle pairs (θk, φk), 1 ≤ k ≤ K . The received signals
on the x − z plane along the ULAs are given by
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x(t) = Ax s(t) + nx (t), z(t) = Azs(t) + nz(t), (1)

where s(t) = [s1(t), . . . , sK (t)]T is the signal vector with the superscript T being the
transpose operator, both nx (t) and nz(t) are assumed to be additive white Gaussian
noises, and the array manifold matrices of the x-ULA and z-ULA are written as:

Ax = [ax (θ1), ax (θ2), . . . , ax (θK )], (2)

Az = [az(φ1), az(φ2), . . . , az(φK )], (3)

where the steeringvectors are expressed asax (θk) = [1, ak, . . . , aM−1
k ]T andaz(φk) =

[1, bk, . . . , bN−1
k ]T with ak and bk being ak = exp( jμk) and bk = exp( jνk), respec-

tively. Note that j = √−1. The variables (μk, νk), expressed as μk = 2πd cos θk/λ

and νk = 2πd cosφk/λ, respectively, are frequency variables corresponding to
(θk, φk).

The cross-covariance matrix of x and z is defined as:

R̄ = E[x(t)zH (t)] = AxSAH
z + σ 2IM×N , (4)

where the nonsingular diagonal matrix S ∈ C
K×K is computed as S = E[s(t)sH (t)]

with H denoting the complex conjugate transpose operator, and σ 2 is the noise power.
IM×N is an M × N size of matrix with I(i, j) = 1 when i = j , and I(i, j) = 0
otherwise.

3 AlgorithmDevelopment

For the ease of readability, we first analyze our developed algorithm in the noise-free
case.We defineY = AxSAH

z , where the elements of the noise freeY can be expressed
as:

Ym,n =
K∑

k=1

sk(t)s
H
k (t)am−1

k (b∗
k )

n−1

=
K∑

k=1

sk(t)s
H
k (t)e j2πd/λ[(m−1) cos θk−(n−1) cosφk ], (5)

where ∗ is the conjugate operator. As shown in (5), the cross-covariance matrix Y
depends on not only the azimuth angle-dependent but also the elevation angle. Our
idea is first to estimate one of the two angles, φk (or θk), from the cross-covariance
matrix of the received signal and then to obtain the other angle, θk (or φk), based on
the steering vector information of the estimated φk (or θk). To decrease the effect of
the information of the other angle, the autocorrelation covariance matrix is computed
as:

Ryy = YHY = AzSyAH
z , (6)
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where Sy = SHAH
x AxS and its elements are defined as sy(m, n),m = 1, . . . , N −

1, n = 1, . . . , N−1. It isworth noting thatwhen computing the autocorrelation covari-
ance matrix, the pairing information of the azimuth and elevation angles contained in
R̄ still exists, and the details are shown in [7].

Next, we perform QR decomposition of Ryy [5]:

Ryy = QR, (7)

where Q ∈ C
M×M is an orthonormal matrix and R ∈ C

M×N is an upper tri-
angular matrix with C being the set of complex numbers. Adopting the notation
Q = [

q1 q2 · · · qM
]
and R = [

r1 r2 · · · rM
]T, we conclude that qHi q j = 0 for

i �= j , and qHi q j = 1 otherwise. Since rank(Ryy) = K and R is an upper triangular
matrix, both ri , i ∈ {K + 1, . . . , M} are 0, where 0 ∈ C

N×1 denotes a vector with all
0 values.

The elements along the columns or rows of Ryy satisfy the LP property, that is:

um,n +
K∑

k=1

ckum,n−k = 0,

m = 1, 2, . . . , N , n = K + 1, K + 2, . . . , N , (8)

where um,n = exp( jνm)sy(m, n) exp( jν∗
n ) and the ck = b∗

k are the LP coefficients,
from which the νk are given by the K roots of the following polynomial [1]:

1 +
K∑

k=1

ckz
K−k = 0, (9)

where z = bk, k = 1, . . . , K . Let Ryy = [
u1 u2 · · · uN

]
, with its elements being

definedasuk = [
u1,k u2,k · · · uN ,k

]T , then,wehave rk = [
qH
k u1 qH

k u2 · · · qH
k uN

]T
.

Therefore, ri for i ∈ {K + 1, . . . , M} has an LP property to that of the rows of Ryy ,
and we can obtain the following expression for ri based on (8):

rk(n) +
K∑

i=1

cirk(n − i) = 0, k = 1, . . . , K , n = K + 1, . . . , N . (10)

A Toeplitz matrix A is defined as follows:

A = Toeplitz
([
cK 01×(N−K−1)

]T
,

[
cK cK−1 · · · c1 1 01×(N−K−1)

])
, (11)

Then, (10) can be rewritten as:

Ark = Dkc − fk = 0, k = 1, 2, . . . , K , (12)
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where

Dk =

⎡

⎢⎢⎢⎣

[rk]K [rk]K−1 · · · [rk]1
[rk]K+1 [rk]K · · · [rk]2

...
...

. . .
...

[rk]N−1 [rk]N−2 · · · [rk]N−K

⎤

⎥⎥⎥⎦ ,

c = [
c1 c2 · · · cK

]T
,

and fk = − [[rk]K+1 [rk]K+2 · · · [rk]N
]T.

Collecting all K vectors in (12) together yields:

[(Ar1)T (Ar2)T · · · (ArK )T]T = Dc − f = 0, (13)

with D = [DT
1 DT

2 · · · DT
K ]T, f = [fT1 fT2 · · · fTK ]T. In the absence of noise, it

is easy to calculate c from (13).

Step 1 In the presence of noise, however, Rzz = R̄
H
R̄ �= Ryy . That is, only Rzz

is available instead of Ryy . Hence, based on the above analysis, QR decomposition is
similarly performed on the autocorrelation covariance matrix Rzz to obtain the noisy
matrices Q and R. Therefore, (Dc − f) in (13) is no longer equal to a zero vector
again in the presence of noise. In the following, we define the result of (Dc − f) as
e ∈ C

(N−K )K×1. The resulting problem is converted into the problem of finding c
from Dc− f = e, which can be solved by means of the following WLS minimization
[1] :

ĉ = argmin
c

eHWe =
(
DHWD

)−1
DHWf, (14)

whereW is a symmetric weight matrix, for which the optimal choice is derived from
the covariance matrix w.r.t. e, given by

W = σ 2
[
E

{
eeH

}]−1 = IK ⊗ (AAH )−1. (15)

Next, by substituting ĉ into (9), an estimate of the steering vector, i.e., b̂k , w.r.t. the
elevation angle can be obtained from the roots of (9). Finally, the frequency {ν̂k} w.r.t.
the elevation angle φk is:

ν̂k = ∠(b̂k), k = 1, 2, . . . , K . (16)

Step 2 Similarly, the frequency {μk} w.r.t. the azimuth angle θk can be computed
by using the WLS method based on the QR decomposition of RH

zz . However, this will
lead to an unpair match problem for the joint azimuth and elevation angles. To solve
this problem, a steering matrixG based on the estimates of b̂k is constructed.We have:

G = [
g1 g2 · · · gK

]
, (17)
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with gk = [
b̂k b̂2k · · · b̂Nk

]T
. Therefore, R̄ is rewritten as:

R̄ = H�GT, (18)

where � = diag ([γ1 γ2 · · · γK ]) with γk = E[sk(t)sHk (t)], and the matrix H =
[
h1 h2 · · · hK

]
with hk = [

ak a2k · · · aMk
]T
. As shown in (18), the steering matrices

G and H, corresponding to the joint azimuth and elevation angles, respectively, are
completely separated, with the kth columns ofGT andH being characterized only by
νk and μk , respectively. Defining P̂ = H�, we obtain:

P̂ = R̄(Ĝ
†
)T, (19)

where † denotes the pseudoinverse operator. It is worth noting that the elements of P̂,
i.e., {hkγk}, also satisfy the LP property, which leads to the following relationship:

ĥk,uαk exp{ jμk} = ĥk,l , (20)

where ĥk,u and ĥk,l are p̂k without the last and first elements, respectively, and p̂k =
hkγk . Therefore, the solution to (20) can be calculated using the WLS technique and
is given by

âk = ĥ
H
k,u�k ĥk,l

ĥ
H
k,u�k ĥk,u

, k = 1, 2, . . . , K , (21)

where �k = (
BkBH

k

)−1
with the Toeplitz matrix Bk being given by

Bk = Toeplitz
(
[−ak 01×(M−2)]T , [−ak 1 01×(M−2)]

)
. (22)

As a result, the frequency μk is obtained as:

μ̂k = ∠(âk). (23)

Step 3 Now, the joint azimuth and elevation angles θk and φk can be estimated as:

φ̂k = cos−1(
λ

2πd
ν̂k), θ̂k = cos−1(

λ

2πd
μ̂k). (24)

The joint angles θ̂k and φ̂k are automatically pair match, and the computational com-
plexity of the proposed method is O(MN 2 − M2N + M3).

We summarize the main steps of the proposed algorithm as follows:

(1) QR decomposition is performed on the autocorrelation covariancematrix to obtain
the subspace corresponding to φk (or θk).
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Fig. 2 The scatter plot of estimation θ̂ and φ̂ by the proposed algorithm

(2) The LP property and WLS method are used to obtain an estimate of φk (or θk)
from (7) to (16).

(3) The obtained estimate of φk (or θk) is used to construct the steering matrix G in
(17), and the matrix P that contains the information of θk (or φk) is obtained using
(19).

(4) The obtained matrix P and the WLS method are used to estimate θk (or φk) from
(20) to (24).

4 Numerical Examples

Simulation results are presented to evaluate the DOA estimation performance of the
proposed algorithm in comparison with the 2-D ESPRIT method [8], the MEMP
theomd [6], the PM method [17], Xi’s method [18], Liu’s method [14], the cross-
correlation-based method [16], and the ML method [9] as well as the CRLB [15].
Consider a constant signal power, denoted by σ 2

s . The signal-to-noise ratio (SNR)
is defined as SNR = 10 log(σ 2

s /σ 2). We scale the noise power to produce dif-
ferent SNR conditions. The root mean square error (RMSE), defined as RMSE =√
E{(θ̂k − θk)2} + E{(φ̂k − φk)2}, is considered as a metric to verify the effectiveness

of the proposed method. Our simulations consist of 200 Monte Carlo trials run in
the MATLAB R2017b on a laptop with 32 GB of RAM and the 64-bit Windows 10
operating system.

The 2-D DOA distributions at the joint azimuth and elevation angles (5◦, 15◦) and
(35◦, 40◦) are plotted in Fig. 2, where M = N = 16, SNR=10 dB and the number of
snapshots is L = 1000. As shown in Fig. 2, the proposed algorithm locates the true
sources with super-resolution performance. Unless stated otherwise, the parameters
settings for the following simulations are the same as in this experiment.
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Fig. 3 RMSE of elevation and azimuth versus SNR
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Fig. 4 RMSE of elevation and azimuth versus number of snapshots

In our second test, we investigate the RMSE of the proposed method versus the
SNR and the number of snapshots, as shown in Figs. 3 and 4, respectively. Compared
with the 2-D ESPRIT method, the MEMP method, the PM method and Xi’s method,
the proposed method achieves DOA estimation performance comparable to that of the
ML method and better than that of other algorithms; in particular, it achieves a higher
SNR. Moreover, the proposed solution closely approaches the CRLB when the SNR
is larger than 0 dB, as seen in Fig. 3, while it is observed from Fig. 4 that the proposed
method outperforms the other compared methods when the number of snapshots is
larger than 200 and shows a gradual improvement in DOA estimation performance as
the number of snapshots increases.
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Fig. 6 Probability of success versus SNR

In our third test, the RMSE versus the number of sensors is evaluated, where the
number of sensors M = N is varied from 10 to 30, as shown in Fig. 5. The proposed
method achieves performance comparable to that of the ML method and is superior
to the other algorithms when M(N ) > 12. With an increasing of number of sensors,
all compared methods achieve better DOA estimation performance.

In our fourth test, the probability of success versus the SNR is examined, and the
results are plotted in Fig. 6, where the probability of success is computed as the ratio
of the number of successful runs to the total number of independent runs. A trial is
regarded as a successful one when maxk=1,2 |ω̂k − ωk | ≤ |ω2 − ω1|/2, ω = θ or φ.
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Table 1 Computation time (second) versus the number of sensors (M = N )

Algorithm Complexity M = 10 M = 20 M = 30

Proposed algorithm O(M3) 0.0010 0.0014 0.0017

2-D ESPRIT [5] O(M2N2) 0.0016 0.0127 0.0526

MEMP [6] O(M2N2) 0.0024 0.0135 0.0617

PM [7] O(MNL) 0.0016 0.0250 0.1567

Xi’s method [8] O(MNL + M2N + N2M) 1.5514 1.8962 2.9053

Liu’s method [9] O(MNL + M2N ) 0.0025 0.0356 0.1879

Cross-correlation method [10] O(MNL) 0.0016 0.0230 0.1392

ML [12] O(M3N3) 0.0431 0.3119 1.0704

It is concluded that all methods achieve 100% success at SNR ≥ −15 dB, and our
method and the ML method achieve the highest resolution probability.

The last experiment is to compare the runtimes of the algorithms, as shown in
Table 1. The averageCPU runtime is used as the performancemetric to provide a rough
estimate of complexity. For simplicity, we consider only the principal complexity of
each method. Both simulation results and the complexity analysis demonstrate that
the proposed method is much faster than the other investigated methods. Specifically,
the complexity of our method, i.e., O(M3), is lower than that of the other algorithms
for M = N .

5 Conclusion

A fast 2-D DOA estimator is designed in which the resulting 2-D DOA estimation
problem is converted into a 2-D frequency estimation problem. With the help of the
LP property, the frequency w.r.t. the elevation angle is first obtained from the autocor-
relation covariance matrix of the received data using the WLS technique. To address
the unpair match problem, the frequency w.r.t. the azimuth angle is estimated based on
the constructed steering matrix w.r.t. the estimated elevation angle constructed in the
first step. Finally, both the azimuth and elevation angles can be easily computed using
the corresponding inverse cosine functions. Simulation results show that the proposed
method enables more accurate DOA estimation than other methods as well as faster
implementation as a result of the ability to obtain closed-form solutions instead of
performing iterative approximation.
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