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a b s t r a c t 

This paper considers the problem of sparse recovery whose optimization cost function is a linear com- 

bination of a nonsmooth sparsity-inducing term and an � 2 -norm as the metric for the residual error. 

Since the resultant sparse approximation involves nondifferentiable functions, locally competitive algo- 

rithm and forward Euler discretization method are exploited to approximate the nonsmooth objective 

function, yielding a smooth optimization problem. Alternating direction method of multipliers is then 

applied as the solver, and Nesterov acceleration trick is integrated for speeding up the computation pro- 

cess. Numerical simulations demonstrate the superiority of the proposed method over several popular 

sparse recovery schemes in terms of computational complexity and support recovery. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Sparse recovery aims to estimate an unknown sparse signal

rom a noisy underdetermined linear system, which is of great in-

erest in signal processing and machine learning [1] . Mathemati-

ally, given a sensing matrix A ∈ R 

M×N with M < N , the underlying

ask is to recover a target signal x ∈ R 

N from its undersampled set

f noisy observations y ∈ R 

M : 

 = Ax + ε (1) 

here ε = [ ε1 ε2 . . . εM 

] T is the additive disturbance vector and

 ε i } are independent and identically distributed (i.i.d.) random

ariables with variance σ 2 . One of the most popular approaches

o sparse signal recovery is to minimize a linear combination of a

parsity-inducing term and an � 2 -norm as the metric for the resid-

al error [2–4] : 

in 

x 
λ‖ 

x ‖ p + ‖ 

Ax − y ‖ 2 , p = 0 or 1 (2)

here λ> 0 is a tradeoff parameter that balances the weight be-

ween the sparsity-inducing term and � 2 -norm error term, and can

e chosen as suggested in [5,6] . When p = 1 , the cost function

 x ‖ p is ‖ x ‖ 1 = 

∑ 

i | x i | , resulting in an � 1 -norm penalty, which is

sed as a convex surrogate for the ideal counting norm (i.e., ‖ x ‖ ).
0 
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he resulting � 1 -norm minimization is also known as the least ab-

olute shrinkage and selection operator (LASSO) [7] . Numerical al-

orithms (some of them are extremely fast) have been proposed

or the � 1 -norm minimization based sparse recovery [6,8–10] . A

pecialized interior-point method has been designed for solving

he � 1 -regularized least squares problem ( � 1 -LS) [6] , but it is time-

onsuming. In fact, the � 1 -norm is the closest convex norm to the

 0 -norm, nevertheless, it is known that the � 1 -norm underesti-

ates the number of nonzero elements, when used as a sparsity-

nducing regularizer. 

Although the problem of � 0 -norm minimization is NP-hard and

ecause the corresponding function is highly discontinuous and

ondifferentiable, it gives the highest sparse recovery performance

ith very few measurements [11] . Hence, this motivates the use

f approximate � 0 function in solving (1) . Several works have

een proposed to relax the � 0 -norm minimization, such as focal

nderdetermined system solver (FOCUSS) [12] , approximate pro-

ected generalized gradient (APGG) [3] , iteratively reweighted least

quares (IRLS) [13] , iterative reweighted � 1 minimization (IR � 1 )

14] , smoothed � 0 (SL0) [5] and RSL0 [15] . Application of the itera-

ively reweighted algorithm for solving � p minimization with p < 1

s studied in [13] , where sparse signals can be recovered even in

he presence of noise from fewer measurements. SL0 [5] utilizes

he steepest accent algorithm to maximize its cost function, which

chieves fast implementation and improved performance in noisy

nvironment. To achieve robustness against noise, RSL0 [15] is pro-

osed to modify the projection step of the noise-free SL0 [5] . 
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Fig. 1. Examples of general threshold function. 
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In this work, an efficient algorithm is devised for sparse recov-

ery with nonsmooth sparsity-inducing term. We briefly summarize

the contributions of this work as follows: i) Since the sparsity-

inducing function is not differentiable, motivated by the concept of

locally competitive algorithm (LCA) [16] , we combine LCA and al-

ternating direction method of multipliers (ADMM) [17] to devise a

fast and accurate algorithm to solve the general nonsmooth sparse

approximation problems. Also, Nesterov acceleration trick [18] is

utilized to speed up the computing process. ii) A challenge is that

LCA is a continuous-time algorithm, and forward Euler discretiza-

tion method [19,20] is applied to approximate the penalty func-

tion into the smoothed version; iii) For orthonormal and general

sensing matrices, matrix inversion lemma and iterative method are

introduced for their computationally efficient calculation, respec-

tively. 

The reminder of this paper is organized as follows. In Section 2 ,

the background of LCA and its corresponding threshold func-

tion are described. Section 3 introduces the efficient algorithm

for sparse recovery. In Section 4 , numerical examples are con-

ducted to evaluate the performance of the proposed algorithm.

Section 5 concludes this paper. 

Notation : E( · ), 〈 · , · 〉 , ( · ) T and (·) −1 stand for the expectation,

inner product, transpose and inverse operators, respectively. ∂ J ( · )

represents the subdifferential of the function J . I M 

stands for the

M × M identity matrix. 0 denotes a vector with all zero entries. 

2. Preliminary 

LCA is a continuous-time algorithm designed to solve the prob-

lem of sparse approximation. To begin with, we define J (x ) : 

J (x ) := λ‖ 

x ‖ 1 + 

1 

2 

‖ 

Ax − y ‖ 

2 
2 . (3)

The subdifferential of (3) with respect to x in the set valued frame-

work is 

∂ x J (x ) = λsgn (x ) + A 

T ( Ax − y ) (4)

where 

sgn (x ) = 

{ 

1 , if x > 0 

∈ [ −1 1] , if x = 0 

−1 , if x < 0 . 

In this unconstrained convex optimization formulation (3) , the

LCA introduces an internal state vector u = [ u 1 u 2 . . . u N ] 
T for x :

x := Prox (η,δ,λ) (u ) . (5)

where Prox ( η, δ, λ) ( · ) denotes the proximal mapping of � 1 -norm

when setting η → ∞ , δ = 1 and λ = 1 . Then x and u should have

the same sign. By simple calculation, 

u − x = (| u | − max (| u | − λ, 0) · sgn (u )) = λsgn (x ) . (6)

Substituting (6) into (4) , we obtain 

τ
du 

dt 
= −∂ x J (x ) = −u + x − A 

T ( Ax − y ) . (7)

Here, τ represents the time constant of the physical solver in im-

plementing the algorithm. In [16,21,22] , the relationship among

∂ | x i |, x i and u i is established. Given x , we have 

u − x = λ∂ ‖ 

x ‖ 1 . (8)

Since ‖ x ‖ 1 is nondifferentiable at x = 0 , the subdifferential, de-

noted as ∂‖ x ‖ 1 , is employed to describe the gradient of ‖ x ‖ 1 . The

advantage of LCA is that we do not need to implement ∂‖ x ‖ 1 di-

rectly. 

A general threshold function for mapping from x to u , is given

by [16] 

x i = Prox (η,δ,λ) (u i ) = sign ( u i ) 
| u i | − δλ

1 + e −η(| u i |−λ) 
(9)
here η is a parameter to control the speed of the threshold tran-

ition, δ ∈ [0, 1] indicates that the fraction of an additive adjust-

ent is made for values above threshold, and sign( · ) denotes the

ign of a quantity with sign (0) = 0 . Some examples of this gen-

ral threshold function are provided in Fig. 1 . The LCA embeds the

radeoff parameter into the threshold function Prox ( η, δ, λ) ( · ). Set-

ing η → ∞ , δ = 0 and λ = 1 , we obtain an ideal hard threshold

unction, which approximates the � 0 -norm based sparse recovery.

etting η → ∞ , δ = 1 and λ = 1 , then the general threshold func-

ion is reduced to the soft threshold function [16] , corresponding

o the case of p = 1 . 

. Algorithm development 

Now, we consider the nonsmooth � 1 / � 0 -norm approximation

roblem of (2) . To solve (2) , let J(x ) := ‖ x ‖ p (p = 0 or 1) for sim-

licity, we introduce an auxiliary variable z ∈ R 

M to rewrite it

quivalently as 

in 

x , z 
λJ(x ) + ‖ 

z ‖ 2 , s . t . Ax − z = y . (10)

ADMM is a powerful optimization framework that is suitable

or large-scale problems arising in machine learning and signal

rocessing. In the case of the � 0 -norm minimization, directly ex-

ending the ADMM algorithm is not guaranteed to converge since

he regularization term is nonconvex. To derive a convergent algo-

ithm for the nonconvex case, we develop a proximal ADMM algo-

ithm via incorporating with the LCA. 

Based on the decomposition-coordination procedure of the

DMM, we proceed to unveil each step for solving problem (10) .

he corresponding augmented Lagrangian of (10) is 

 (z , x , w ) = λJ(x ) + ‖ 

z ‖ 2 − < w , Ax − z − y > 

+ 

ρ

2 

‖ 

Ax − z − y ‖ 

2 
2 (11)

here w ∈ R 

M is the dual variable vector, ρ > 0 is a penalty pa-

ameter that controls the convergence rate of the algorithm. Then

DMM applied to (11) consists of the following iterative steps. 

In the (t + 1) th iteration, the z -minimization step has the

losed-form solution, which degenerates to the proximal operator

f � 2 -norm: 

 

t+1 = arg min 

z 

( 

‖ 

z ‖ 2 + 

ρ

2 

∥∥∥∥Ax 

t − z − y − w 

t 

ρ

∥∥∥∥
2 

2 

) 
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A

= Prox 1 
ρ ‖ ·‖ 2 

(
Ax 

t − y − w 

t 

ρ

)
(12) 

n which the proximal operator of � 2 -norm is known as [19] 

rox ν‖ ·‖ 2 (v ) = 1 ‖ v ‖ 2 ≥ν (v ) 

(
1 − ν

‖ 

v ‖ 2 

)
v (13)

here 1 ( · ) is the indicator function and ν := 1/ ρ . 

The x -minimization step computes 

 

t+1 = arg min 

x 

( 

J(x ) + 

ρ

2 λ

∥∥∥∥Ax − z t+1 − y − w 

t 

ρ

∥∥∥∥
2 

2 

) 

. (14) 

To gain overall efficiency of the algorithm, we use the standard

rick for ADMM to solve (14) approximately. Based on the descent

emma , we linearize the term J ( x ) at a given point x t as the form

f 

(x ) ≈ J(x 

t )+ < x − x 

t , ∂ x J(x 

t ) > + 

1 

2 

∥∥x − x 

t 
∥∥2 

2 
. (15)

ith this linearization, x -minimization results in the following

losed-form solution: 

 

t+1 = ( I N + ρA 

T A ) −1 

[
x 

t − ∂ x J(x 

t ) + 

ρ

λ
A 

T 

(
y + z t+1 + 

w 

t 

ρ

)]
. 

(16) 

However, since the penalty function in (14) is not smooth, we

annot obtain ∂ x J ( x t ). LCA can be applied to solve the nonsmooth

parse recovery problems, but it is a continuous-time algorithm.

ssigning a step size for the discretization equal to the LCA time-

onstant τ , and then applying the forward Euler discretization

ethod to the LCA, we proximate the penalty function in (14) into

he smoothed version: 

u 

t+1 − u 

t 

τ
= τ

du 

dt 
= −∂ u J(u 

t ) 

⇒ u 

t+1 = u 

t − ∂ u J(u 

t ) = x 

t − ∂ x J(x 

t ) 

x 

t+1 = Prox (η,δ,λ) (u 

t+1 ) . (17) 

It is easy to see that the first-order discretization of the LCA

ynamics is expressed as 

 

t+1 = Prox (η,δ,λ) (x 

t − ρ∂ x J(x 

t )) . (18)

According to the definition of the proximity operator [17,19] , we

ave: 

rox (η,δ,λ) (x 

t ) ≈ x 

t − λ∂ x J(x 

t ) . (19)

Therefore, x -minimization in (16) corresponds to 

 

t+1 = ( I N + ρA 

T A ) −1 

[
Prox (η,δ,λ) (x 

t ) + 

ρ

λ
A 

T 

(
y + z t+1 + 

w 

t 

ρ

)]
. 

(20) 

Here, the term ( I N + ρA 

T A ) −1 requires the inversion of a N × N

atrix, which is computationally expensive. However, in the spe-

ial case where the sensing matrix A is orthonormal, i.e., AA 

T =
I M 

, the complexity of matrix inverse operator can be reduced via

he matrix inversion lemma : 

( I N + ρA 

T A ) −1 = I N − ρA 

T (I M 

+ ρAA 

T ) −1 A 

= I N − ρ

1 + κρ
A 

T A . (21) 

Then, based on (21), (20) is rewritten as 

 

t+1 = 

(
I N − ρ

1 + κρ
A 

T A 

)

·
[

Prox (η,δ,λ) (x 

t ) + 

ρ

λ
A 

T 

(
y + z t+1 + 

w 

t 

ρ

)]
. (22) 

When the rows of A are not orthonormal, the term ( I N +
A 

T A ) −1 does not result in a computationally efficient calculation,

hich can be tackled by a designed matrix B . A well-known itera-

ive method to compute B is [23] : 

 0 = ξ ( I N + ρA 

T A ) T , B k = B k −1 (2 I N − ( I N + ρA 

T A ) B k −1 ) , and 

B = B k for some k, 

here 0 < ξ < 2 / 
∥∥( I N + ρA 

T A )( I N + ρA 

T A ) T 
∥∥

1 
. Let Ā :=

( I N + ρA 

T A ) . Since 

I N − Ā B 0 

∥∥
2 

= 

∥∥I N − ξ Ā ̄A 

T 
∥∥

2 
< 1 

I N − Ā B k 

∥∥
2 

≤
∥∥I N − Ā B k −1 

∥∥2 

2 
≤

∥∥I N − Ā B 0 

∥∥2 k 

2 
, (23) 

he iterative method for computing B converges quadratically. By

sing a proper B , a nice approximate analytic solution of (20) is

asily obtained without evaluating the matrix inverse. Hence,

20) is computed as 

 

t+1 = B ·
[

Prox (η,δ,λ) (x 

t ) + 

ρ

λ
A 

T 

(
y + z t+1 + 

w 

t 

ρ

)]
. (24) 

The update of w is 

 

t+1 = w 

t − ρ( Ax 

t+1 − z t+1 − y ) . (25)

To accelerate the convergence of a proximal gradient method,

he Nesterov acceleration trick has been used in FISTA [8] , in which

he convergence rate is accelerated from O (1/ t ) to O (1/ t 2 ). Such

echnique is also applicable to our method with the following com-

uting process: 

t t+1 = 

1 + 

√ 

1 + 4(t t ) 2 

2 

x 

t+1 = x 

t + 

t t − 1 

t t+1 
(x 

t − x 

t−1 ) 

 

t+1 = w 

t + 

t t − 1 

t t+1 
(w 

t − w 

t−1 ) . (26) 

This completes one update cycle and the algorithm terminates

nce the difference between two consecutive iterations is smaller

han a given threshold or if the maximum iteration number is

eached. While the convergence analysis under such acceleration

s not in the scope of this work, we have the algorithm summa-

ized in Algorithm 1 , where the initial vector of x 0 is taken as the

east squares (LS) solution, i.e., x 0 = A 

† y . 

lgorithm 1 Efficient algorithm for nonsmooth sparse recovery. 

Input : A , y and ρ > 0 

Initialize : z 0 , w 

0 and x 0 = A 

† y , B 

for t = 0 , 1 , 2 · · · do 

z t+1 = Prox 1 
ρ ‖ ·‖ 2 ( Ax t − y − w 

t 

ρ ) 

x t+1 = B ·
[ 

Prox (η,δ,λ) (x t ) + 

ρ
λ

A 

T 
(

y + z t+1 + 

w 

t 

ρ

)] 
w 

t+1 = w 

t − ρ( Ax t+1 − z t+1 − y ) 

Speed up computing process: 

t t+1 = 

1+ 
√ 

1+4(t t ) 2 

2 

x t+1 = x t + 

t t −1 
t t+1 (x t − x t−1 ) 

w 

t+1 = w 

t + 

t t −1 
t t+1 (w 

t − w 

t−1 ) 

Stop if termination condition satisfied. 

end for 

Output : x 
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Fig. 2. Normalized relative error versus noise standard deviation. 

Fig. 3. Normalized relative error versus number of iterations. 

Fig. 4. Normalized relative error versus sparsity K. 
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Theorem 1. For any fixed ρ > 0, the sequence {( z t , x t , w 

t )} generated

by (12) , (24) and (25) from any starting point ( x 0 , w 

0 ) converges to

( z ∗, x ∗, w 

∗), where ( z ∗, x ∗, w 

∗) is a solution of (10) . 

Proof. Since the � 1 -norm minimization in (10) is convex, the

Karush-Kuhn-Tucker (KKT) conditions are sufficient and necessary,

then there exists w 

∗ such that 1 
λ
∇|| z ∗|| 2 = −w 

∗, A 

T w 

∗ ∈ ∂ J ( x ∗)

and Ax ∗ − y = w 

∗, and further results in (z ∗ − z t+1 ) T (w 

t+1 − w 

∗ −
ρA (x t+1 − x ∗)) = 

1 
λ
(z t+1 − z ∗) T (∇ || z t+1 || 2 − ∇ || z ∗|| 2 ) ≥0 , which is

just the equation (A.2) in Theorem 2.1 of [24] , and the rest of the

proof follows similarly the proof of Theorem 2.1 in [24] , which

is omitted here for succinctness. For the � p -norm minimization

at p = 0 in (10) , we set J(x ) = ‖ x ‖ p , h (x ) = ‖ Ax − y ‖ 2 2 , g(x ) =
J(x ) + h (x ) and let ˆ h δ(x , x t ) = h (x t )+ < x − x t , ∇h (x t ) > + 

1 
2 δ

|| x −
x t || 2 

2 
be a convex upper bound to h ( x ) that is tight at x t . It is easy

to check that � p -norm with 0 ≤ p < 1 is non-decreasing in x ∈ [0, ∞ )

[25] . According to (14) , we have J(x t+1 ) + 

ρ
2 λ

ˆ h δ(x t+1 , x t ) ≤ J(x t ) +
ρ

2 λ
ˆ h δ(x t , x t ) , which is equivalent to g(x t+1 ) − g(x t ) ≤ ξ

2 || A (x t+1 −
x t ) || 2 

2 
− ξ

2 δ
|| x t+1 − x t || 2 

2 
with ξ := 

ρ
2 λ

. Since 0 < δ < 

1 
L with L is

the Lipschitz constant of the gradient of h ( x ), we can further de-

rive g(x t+1 ) − g(x t ) ≤ ξ
2 δ

(δL − 1) || x t+1 − x t || 2 2 ≤ 0 . As a result, the

sequence { g ( x t )} is non-increasing, lower bounded, and is also

convergent. Moreover, since { g ( x t )} is convergent and || x t+1 −
x t || 2 2 ≤ 2 δ

ξ (1 −δL ) 
(g(x t ) − g(x t+1 )) , || x t+1 − x t || 2 2 → 0 as t → ∞ . Thus,

an important consequence in [26] is that the bounded sequences

{ x t } t ∈ N generated by P C (x t − ρ∂ x J(x t )) are convergent sequences

as long as C is a closed semi-algebraic subset of R 

N and h ( x ) is

C semi-algebraic with L -Lipschitz gradient. Therefore, since g ( x ) is

bounded from below, and together with the fact that the sequences

{ x t } t ∈ N generated by (12), (24) and (25) are bounded. Moreover,

h ( x ) is a polynomial function and J ( x ) has a piecewise linear graph,

hence the sum g(x ) = J(x ) + h (x ) is semi-algebraic (or a Kurdyka-

Lojasiewicz function) and there exists a constant C > 0 such that

dist (0 , ∂g(x t+1 )) ≤ C|| x t+1 − x t || . Similarly, following the proof of

Theorem 3 in [27] with minor changes, it shows that the sequence

{( z t , x t , w 

t )} has finite length. �

4. Numerical examples 

In this section, numerical simulation results are provided to

evaluate the recovery performance of the proposed method with

� p -norm, and to compare with � 1 -LS [6] , IRLS [13] at p = . 5 and

RSL0 [15] . To guaranteed the fairness in the performance compari-

son, we have employed the same experimental and parameter set-

tings of IRLS in [13] , where the sensing matrix A ∈ R 

M×N is an i.i.d

Gaussian random matrix with N = 256 and M = 100 . The nonzero

entries of the sparse vector are uniformly located among all possi-

ble choices, and their values follow the standard normal distribu-

tion. In all simulation examples, the additive noise vector is zero-

mean white Gaussian distributed with covariance σ 2 I M 

. The pa-

rameters of other algorithms are selected as recommended by re-

spective authors to guarantee the fairness in the comparison. We

repeat our experiments 500 times with different random matrices

and sparse signals. 

In practice, we cannot set η → ∞ , instead a sufficiently large

value is employed. In the proximate � 0 -norm minimization, we set

η = 10 0 0 0 , δ = 0 and λ = 1 , and hence the threshold of the proxi-

mate � 0 -norm is 

x i = T (10 0 0 0 , 0 , 1) (u i ) = sign ( u i ) 
| u i | 

1 + e −10 0 0 0(| u i |−λ) 
. (27)

In the first experiment, we study the normalized relative er-

ror, which is defined as E( 
∥∥ˆ x − x ∗

∥∥
2 
/ ‖ x ∗‖ 2 ) . We test the normal-

ized relative error performance of different algorithms versus noise

variance. The sparsity K is fixed at 20 and the noise standard de-
iation σ is now varied from 0 to 20, and the result is shown in

ig. 2 . It is observed that the proposed method outperforms the

ther algorithms and achieves the best robustness to noise. 

In the second experiment, we examine the normalized relative

rror versus the number of iterations at σ = 0 . 5 . Fig. 3 shows that

lthough the proposed method is inferior to the other algorithms

or smaller number of iterations, it yields a better recovery perfor-

ance when the number of iterations is sufficiently large. 

In the third experiment, we test the normalized relative error

ersus the sparsity K , and the result is shown in Fig. 4 . It seen that

ur proposed method outperforms other algorithms when K ≤ 30,
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Fig. 5. Normalized relative error versus number of measurements. 
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Fig. 6. Successful recovery probability versus number of measurements. 
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.e., the strictly sparse signal satisfies M ≥ CK ln (N/K) , where C is

oughly set at C < 2, based on the restricted isometric property. 

In the fourth experiment, normalized relative error versus the

umber of measurements with noise standard deviation σ = 0 . 5

s studied, where the sparsity K is fixed at 20, and the result is

lotted in Fig. 5 . When the number of measurements is larger
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ig. 7. Support recovery and runtime comparison. Blue and red denote the recovered an

gure legend, the reader is referred to the web version of this article.) 
han 80, the normalized recovery error of the proposed method

s much less than those of the other algorithms. When we in-

rease the number of measurements up to 400, the recovery error

f the proposed method decreases dramatically. This phenomenon

grees with the well-known property of the sparse approximation.

hus, we test the successful recovery probability versus number of
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Table 1 

The average CPU runtime comparison. 

Algorithm Proposed L1-LS RSL0 IRLS 

Time 0.5058 s 1.4988 s 0.0062 s 0.7448 s 
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measurements in Fig. 6 . If the relative error is less than 10 −2 , the

recovery is regarded as a success. We observe that the proposed

method can recover sparse signal with more measurements than

RSL0 and IRLS. 

In the fifth experiment, comparisons based on index support

recovery and runtime are studied. The sensing matrix A of size

60 × 100 is randomly generated with entries drawn from the stan-

dard Gaussian distribution. The support of x , denoted by I, is ran-

domly selected from the range [1, 100]. The number of nonzero

elements in x is 10. The noise standard deviation is set at σ = 0 . 5 .

The results are shown in Fig. 7 . In the presence of noise, all algo-

rithms correctly recover the support of original signal. In particular,

since there are rather few incorrect indices associated with small

amplitudes, the proposed method can provide more reliable sup-

port estimation than others. On the other hand, to compare the

computational complexity of the different recovery algorithms, the

average CPU runtime is used as the performance metric, although

the runtime gives only a rough estimation of complexity. Our sim-

ulations are performed using MATLAB R2015b on a personal com-

puter with 3.40 GHz Intel core i7 CPU and 4GB RAM, under a 64-

bit Microsoft Windows 7 operating system. In such implementa-

tions, the maximum number of iterations and the stopping cri-

teria of different algorithms are set at the same values, i.e., 200

and 10 −7 , respectively. It is observed in Table 1 that the proposed

method enjoys comparable runtime performance for sparse recov-

ery, except that the RSL0 is the fastest. 

5. Conclusion 

In this paper, a fast and accurate algorithm has been devised for

� 1 / � 0 -norm minimization to solve general nonsmooth sparse ap-

proximation problems. To tackle the nonsmooth formulation, LCA

is utilized for its approximation as a smoothed version with the

help of forward Euler discretization method and then ADMM is

applied as the solver. Moreover, Nesterov acceleration trick is also

implemented to speed up the computing process. Numerical re-

sults show that the proposed method has the advantages of better

recovery accuracy against noise and comparable runtime with sev-

eral conventional approaches. 
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