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a b s t r a c t 

We propose a robust sparse recovery formulation in impulsive noise, where � 1 norm as the metric for 

the residual error and a class of weakly convex functions for inducing sparsity are employed. To solve 

the corresponding nonconvex and nonsmooth minimization, a slack variable is introduced to guarantee 

the convexity of the equivalent optimization problem in each block of variables. An efficient algorithm is 

developed for minimizing the surrogate Lagrangian based on the alternating direction method of multi- 

pliers. Model analysis guarantees that this novel robust sparse recovery formulation guarantees to attain 

the global optimum. Compared with several state-of-the-art algorithms, our method attains better recov- 

ery performance in the presence of outliers. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Sparse recovery (SR) is of great interest in recent years [1] ,

which is a paradigm to acquire sparse or compressible signals at

a rate lower than that of the Nyquist sampling. Mathematically,

given a known matrix A ∈ R 

M×N with M < N , the underlying task

is to recover a target signal x ∈ R 

N from its undersampled set of

noisy observations y ∈ R 

M : 

y = Ax + n (1)

where n = [ n 1 n 2 . . . n M 

] T is the additive disturbance vector. In

sparse signal recovery, the desired sparsity structure can be en-

forced by either � 0 or � 1 norm penalties, where � 2 norm data fit-

ting model is employed as the metric for the residual error [1] .

However, it is well known that least squares-based estimators are

highly sensitive to outliers present in the measurement vector,

leading to poor recovery. In practical applications, the measure-

ment noise may be of different kinds or combinations. Impulsive

noise is a typical representative which can model large errors in

observations and has been widely studied in robust statistics [2] .

Hence, the � norm data fitting model may be inefficient. 
2 
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Based on the Huber penalty function as the metric for the

esidual error, a robust sparse recovery formulation is proposed to

itigate the effect of the impulsive noise in the compressed mea-

urements [3] . However, the robust sparse recovery framework is

ot necessarily restricted to the Huber loss function and indeed

any loss functions [4,5] can be used to cater for different noise

ypes. One particular interest is the � 1 norm loss function [5–7] ,

hich is optimal when the impulsive noise is modeled as a Laplace

istribution. Efficient solvers have been presented in [3,5–8] based

n the fast iterative shrinkage algorithm (FISTA) [9] and alternating

irection method of multipliers (ADMM) [10] . 

In this work, we adopt weakly convex sparseness measure to

onstitute the sparsity-inducing penalty, and obtain the following

obust SR formulation: 

in 

x 
‖ Ax − y ‖ 1 + λJ(x ) (2)

here J ( x ) is a sparsity-inducing penalty. Weakly convex penalty

unctions are also known as semi-convex functions [11] , and most

ommonly used nonconvex penalties are formed by weakly con-

ex sparseness [12–15] . Our work is motivated by the fact that

 1 norm loss function has been widely used in designing robust

ethods due to its simultaneous convexity and robustness. Com-

ared to � 1 norm sparsity-inducing, improved results are obtained

y replacing � 1 norm by a suitably chosen nonconvex regulariza-

ion [13,16–19] , which is advantageous with fewer measurements,

aster convergence and better robustness against noise. Since the

eakly convex (nonconvex) regularization and � norm loss func-
1 
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ion are adopted, the resultant minimization problem in (2) is non-

onvex and nonsmooth, which is difficult to solve. 

We briefly summarize the contributions of this work as follows:

) By combining the concept of weak convexity with � 1 norm loss

unction, a robust sparse recovery framework for impulsive noise is

roposed in (2) and analyzed. Our theoretical results state that if

he extended measurement matrix satisfies the restricted isometry

roperty (RIP) with a mild constant, the proposed framework can

obustly reconstruct the original signal. ii) A solution based on the

DMM is derived for (2). We show that robust recovery can be im-

lemented readily by decomposing the augmented Lagrangian sep-

rately into a series of simpler problems whose solutions approach

hat of the main problem (2) . 

The ‖ x ‖ 2 , ‖ x ‖ 1 and ‖ x ‖ 0 are the � 2 norm, � 1 norm and � 0 norm

f a vector x , respectively. In particular, ‖ x ‖ 0 = # { i : x i � = 0 } counts

he nonzero elements of x . ( · ) T and (·) −1 stand for the transpose

nd inverse operators, respectively. sign( · ) denotes the sign of a

uantity with sign (0) = 0 . I represents an identity matrix of ap-

ropriate dimensions. 

. Algorithm development 

We now tackle the problem of robust recovery minimization in

2) , regularized by a weakly convex (nonconvex) function J ( x ). The

eakly convex penalty J ( x ) in (2) is defined as: 

(x ) := 

N ∑ 

i =1 

F (x i ) (3)

here F ( x ) is a weakly convex sparseness measure. Note that F ( x ) is

eakly convex if and only if there exists a convex function H(x ) =
 (x ) − ξx 2 when ξ < 0. A class of sparsity-inducing penalties has

een introduced in [13] , satisfying the following properties. 

efinition 1. (a) F (0) = 0 , F (·) is even and not identically zero; 

(b) F ( · ) is nondecreasing on [0 , + ∞ ) ; 

(c) The function x → F ( x )/ x is nonincreasing on [0 , + ∞ ) ; 

(d) F ( · ) is weakly convex on [0 , + ∞ ) . 

From Lemma 1.1 in [13] , F ( x )/ x → α as x → 0 + for α > 0. Hence,

ccording to Definition 1 , we let β � −ξ/α to characterize the non-

onvexity of F ( x ) and J ( x ), where −ξ divided by α is to remove

he scaling effect on the penalty. For example, the weakly convex

parseness function in (3) may be chosen as [20] : 

 (x ) = (| x | −βx 2 ) 1 | x |≤ 1 
2 β

(x ) + 

1 

4 β
1 | x | > 1 

2 β
(x ) (4)

here 1 P ( x ) is the indicator function with value 1 when the

rgument satisfying P , and 0 otherwise. F ( x ) is a continuous

iecewise quadratic function, which is easily verified to satisfy

efinition 1 when α = 1 and β = −ξ . The weakly convex sparse-

ess function in (4) is also known as the minimax-concave penalty

unction [21] . Note that when ξ = 0 , the robust recovery formula-

ion in (2) becomes convex. 

Next, we solve (2) regularized by any weakly convex function

 ( x ) satisfying Definition 1 . It is worth noting that the main method

o be proposed is similar to [22] , but there are significant differ-

nces between them. The main challenge is that the variables are

oupled through A . This makes it rather difficult when the extra

onstraint with nonsmooth � 1 loss function is introduced. With the

se of operator splitting [23] , we separate the nonsmooth weakly

onvex term from the � 1 norm loss term. Hence, problem (2) can

e rewritten equivalently by introducing an auxiliary variable vec-

or z ∈ R 

M , which is tied to the original variable via an affine con-

traint: 

in 

x 
λJ(x ) + ‖ z ‖ 1 s . t . Ax − z = y . (5)
evertheless, the objective function is nonconvex with respect to

 . Since λ> 0, J is nonconvex, and it may be nondifferentiable,

hich indicates that an optimization problem with J in the objec-

ive function can be hard to solve. In our study, a slack variable w

s introduced to solve (5) . Then, (5) is rewritten as: 

in 

x 
λJ(x ) + ‖ z ‖ 1 s . t . [ A − I ] w = y , [ x 

T z T ] T = w . (6) 

or this type of regularized objective function (6) , ADMM [10] con-

iders the following augmented Lagrangian, given by 

L (x , z , w , γ1 , γ2 ) = λJ(x ) + ‖ z ‖ 1 

+ γT 
1 ([ A − I ] w − y ) + 

ρ

2 

‖ [ A − I ] w − y ‖ 

2 
2 

+ γT 
2 ([ x 

T z T ] T − w ) + 

ρ

2 

‖ [ x 

T z T ] T − w ‖ 

2 
2 (7) 

here γ1 ∈ R 

M and γ2 ∈ R 

M+ N are dual variable vectors and ρ > 0

s the penalty parameter. The fact that by adding a quadratic term
ρ
2 ‖ [ x T z T ] T − w ‖ 2 2 , the function J becomes convex, which leads to

ome favorable properties. For example, the separable function de-

ned in (3) can be expressed as the Moreau envelope [21,24] of

he weakly convex function, i.e., 

(x ) = min 

v ∈ R N 

{ 

J(v ) + 

1 

2 

‖ x − v ‖ 

2 
2 

} 

. (8) 

f β is small enough such that βξ < 

1 
2 , then the objective func-

ion in (8) is strongly convex, and the minimizer is unique. The

roximal operators of some weakly convex functions are well de-

ned and have closed-form expressions which are relatively easy

o compute [13] . Denote w 

T = [ w 

T 
1 w 

T 
2 ] and γT 

2 = [ γT 
21 γT 

22 ] . The

trategy for minimizing the augmented Lagrangian is iteratively

pdating of the primal and dual variables. That is, ADMM applied

o (7) consists of the following iterative steps: 

 

t+1 = arg min 

x 

{
λJ(x ) + 

ρ

2 

‖ x − w 

t 
1 + 

γ t 
21 

ρ
‖ 

2 
2 

}

= prox λ
ρ J(·) 

(
w 

t 
1 −

γ t 
21 

ρ

)
(9) 

 

t+1 = arg min 

z 

{
‖ z ‖ 1 + 

ρ

2 

‖ z − w 

t 
2 + 

γ t 
22 

ρ
‖ 

2 
2 

}

= soft 

(
w 

t 
2 −

γ t 
22 

ρ
, 

1 

ρ

)
(10) 

 

t+1 = arg min 

w 

{ 

ρ

2 

‖ w − [(x 

t+1 ) T (z t+1 ) T ] ‖ 

2 
2 

+ w 

T ([ A − I ] T (γ t 
1 − ρy ) − γ t 

2 ) + 

ρ

2 

‖ [ A − I ] w ‖ 

2 
2 

} 

(11) 

1 
t+1 = γ1 

t + ρ([ A − I ] w 

t+1 − y ) (12) 

1 
t+1 = γ2 

t + ρ([(x 

t+1 ) T (z t+1 ) T ] T − w 

t+1 ) . (13) 

n which prox( · ) and soft( · ) are proximal and soft-thresholding

hrinkage operators, respectively. 

In the process of the x -minimization (9), for F ( x ) in (4) , when

< 1/(2 ζ ), its proximal operator is [13] 

rox ζ F ( v ) = 

v − ζ sign( v ) 

1 − 2 ζβ
1 ζ≤| v |≤ 1 

2 β
( v ) + v 1 | v | > 1 

2 β
( v ) . (14)

The w -minimization (11) is a convex formulation and has a

losed-form solution, but it is not computationally efficient for

arge-scale data due to the inverse computation of the multiplica-

ion of the sensing matrix, i.e., (I + ρ[ A − I ] T [ A − I ]) −1 , which can



86 Q. Liu et al. / Signal Processing 152 (2018) 84–89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‖

 

O  

fi

‖  

R

〈  

〈  

I

 

C  

w

 

F  

d  

fi

∑

 

∑

 

I

‖  

δ  

w

be approximated by a design matrix B . Let Ā := (I + ρ[ A − I ] T [ A −
I ]) . A well-known iterative method [13] to compute B is 

B 0 = 

1 

2 δ
Ā 

T , (15)

B k = B k −1 (2 I − Ā B k −1 ) , (16)

where 0 < δ < 2 / ‖ ̄A ̄A 

T ‖ 1 . When B k satisfies ‖ A 

−1 − B k ‖ 2 F 
≤ ε

where ε is a small positive value, a nice approximate analytic so-

lution of (11) can be easily obtained without evaluating the matrix

inverse: 

w 

t+1 = B 

(
[(x 

t+1 ) T (z t+1 ) T ] T − 1 

ρ
([ A − I ](γ t 

1 − ρy ) − γ t 
2 ) 

)
. (17)

3. Model analysis 

In this section, we prove that when a class of sparsity-inducing

penalties satisfies the Definition 1 in (2), global minimum of the

model can be found. Recovery guarantees based on the RIP of the

extended matrix [ A − I ] have been reported in [25] . 

For any matrix ˆ A = [ A0 − I ] , define the RIP-constant δk 1 ,k 2 
by

the infimum value of δ such that 

(1 − δ)(‖ x ‖ 

2 
2 + ‖ z ‖ 

2 
2 ) ≤ ‖ ̂

 A [ x 

T z T ] T ‖ 

2 
2 

≤ (1 + δ)(‖ x ‖ 

2 
2 + ‖ z ‖ 

2 
2 ) (18)

holds for any x with |supp( x )| ≤ k 1 and z with |supp( z )| ≤ k 2 . 

Lemma 1. For any x 1 , x 2 ∈ R 

N and z 1 , z 2 ∈ R 

M such that

supp (x 1 ) ∩ supp (x 2 ) = ∅ , supp (z 1 ) ∩ supp (z 2 ) = ∅ , and

| supp (x 1 ) | + | supp (x 2 ) | ≤ k 1 , | supp (z 1 ) | + | supp (z 2 ) | ≤ k 2 , there

exists | t| ≤ δk 1 ,k 2 
, such that 

‖ ̂

 A [ x 

T 
1 z T 1 ] 

T ‖ 

2 
2 = (1 + t) ‖ [ x 

T 
1 z T 1 ] 

T ‖ 

2 
2 , (19)

and ∣∣< 

ˆ A [ x 

T 
1 z T 1 ] 

T , ̂  A [ x 

T 
2 z T 2 ] 

T > 

∣∣
≤

√ 

δ2 
2 k 1 , 2 k 2 

− t 2 
√ ‖ x 1 ‖ 

2 
2 

+ ‖ z 1 ‖ 

2 
2 

√ ‖ x 2 ‖ 

2 
2 

+ ‖ z 2 ‖ 

2 
2 
. (20)

Proof. It is similar to the proof of Theorem 6.14 of [26] and omit-

ted here to save space. �

Theorem 1. Suppose that 1 
γ

√ 

k 2 
k 1 

≤ λ ≤ γ
√ 

k 2 
k 1 

( γ ≥ 1) and the ex-

tended sensing matrix ˆ A satisfies the RIP of order {2 k 1 , 2 k 2 } with 

δ2 k 1 , 2 k 2 ≤
1 √ 

1 + 2(γ 2 + 

1 
4 
) 2 

. (21)

Then for y = Ax − z , the solution of (5) denoted by { x ∗, z ∗}, obeys: 

J( x 

∗ − x ) ≤ C 1 J( x −k 1 ) + C 2 ‖ z −k 2 ‖ 1 , (22)

where the constants C 1 and C 2 depend on δ2 k 1 , 2 k 2 
, and x −k 1 

( z −k 2 
)

denotes the vector setting the k 1 (k 2 ) largest absolute entries of x ( z )

to be 0 and keeping others. 

Proof. Let u = x − x ∗ and v = v − v ∗. By the definitions of x ∗ and

z ∗, it is obvious that 

ˆ A [ u ; v ] = 0 . (23)

For notational simplicity, stacking of two vectors u and v , [ u 

T v T ] T ,

is denoted by [ u ; v ]. Consider an index set S 0 of k 1 largest absolute

entries of u . At first, denote S 0 = S 1 ∪ S 2 ∪ . . . , where 

• S 1 : index set of k 1 largest absolute entries of u in S 0 , 
• S 2 : index set of k 1 largest absolute entries of u in S 0 ∪ S 1 , etc. 

In a similar manner, index sets T 0 , T 1 , T 2 , . . . are defined for v . 

We observe that 
 ̂

 A [ u S 0 ; v T 0 ] ‖ 

2 
2 = 〈 ̂  A [ u S 0 ; v T 0 ] , ̂

 A [ u ; v ] 〉 
−〈 ̂  A [ u S 0 ; v T 0 ] , 

∑ 

p≥1 

Au S p −
∑ 

q ≥1 

v T q 〉 

= 〈 ̂  A [ u S 0 ; v T 0 ] , 
∑ 

p≥1 

Au S p −
∑ 

q ≥1 

v T q 〉 . (24)

n the one hand, according to Lemma 1 , the left hand side satis-

es, 

 ̂

 A [ u S 0 ; v T 0 ] ‖ 

2 
2 ≥ ( 1 + t ) ‖ [ u S 0 ; v T 0 ] ‖ 

2 
2 . (25)

ecalling Lemma 1 , we have 

 ̂

 A [ u S 0 ; v T 0 ] , Au S p 〉 ≤
√ 

δ2 
2 k 1 ,k 2 

− t 2 ‖ [ u S 0 ; v T 0 ] ‖ 2 ‖ u S p ‖ 2 , (26)

 ̂

 A [ u S 0 ; v T 0 ] , v T q 〉 ≤
√ 

δ2 
k 1 , 2 k 2 

− t 2 ‖ [ u S 0 ; v T 0 ] ‖ 2 ‖ v T q ‖ 2 , (27)

nserting (26) and (27) into the left hand side of (24) , we have 

〈 ̂  A [ u S 0 ; v T 0 ] , 
∑ 

p≥1 

Au S p −
∑ 

q ≥1 

v T q 〉 

≤
√ 

δ2 
2 k 1 , 2 k 2 

− t 2 ‖ [ u S 0 ; v T 0 ] ‖ 2 

( ∑ 

p≥1 

‖ u S p ‖ 2 + 

∑ 

q ≥1 

‖ v T q ‖ 2 

) 

. (28)

ombining (25) and (28) into (24) , and applying Lemma 1 again,

e get: 

( 1 + t ) ‖ [ u S 0 ; v T 0 ] ‖ 2 ≤
√ 

δ2 
2 k 1 , 2 k 2 

− t 2 

( ∑ 

p≥1 

‖ u S p ‖ 2 + 

∑ 

q ≥1 

‖ v T q ‖ 2 

) 

. 

(29)

or each p ≥ 1, the smallest and largest absolute entries of u S p are

enoted by u −p and u + p , respectively. Similarly, v + q and v −q are de-

ned for v T q with q ≥ 1. Using Lemma 6.14 of [26] , we obtain: 

 

p≥1 

‖ u S p ‖ 2 ≤
∑ 

p≥1 

( 

1 √ 

k 1 
‖ u S p ‖ 1 + 

√ 

k 1 

4 

(u 

+ 
p − u 

−
p ) 

) 

≤ 1 √ 

k 1 
‖ u S 0 

‖ 1 + 

1 

4 

√ 

k 1 
‖ u S 0 ‖ 1 , (30)

 

q ≥1 

‖ v T q ‖ 2 ≤
∑ 

q ≥1 

( 

1 √ 

k 2 
‖ u T q ‖ 1 + 

√ 

k 2 

4 

(v + q − v −q ) 

) 

≤ 1 √ 

k 2 
‖ v T 0 ‖ 1 + 

1 

4 

√ 

k 2 
‖ v T 0 ‖ 1 . (31)

nserting (30) and (31) into (29) , and noticing 

 [ u S 0 ; v T 0 ] ‖ 2 ≥ 1 √ 

2 k 1 
‖ u S 0 ‖ 1 + 

1 √ 

2 k 2 
‖ v T 0 ‖ 1 , (32)

δ2 k 1 , 2 k 2 √ 

1 − δ2 
2 k 1 , 2 k 2 

= max 
t 

√ 

δ2 
2 k 1 , 2 k 2 

− t 2 

1 + t 
, s . t . | t | ≤ δ2k 1 , 2k 2 . 

2 k 1 ,k 2 ≤ δ2 k 1 , 2 k 2 , δk 1 , 2 k 2 ≤ δ2 k 1 , 2 k 2 , (33)

e have: 

1 √ 

2 k 1 
‖ u S 0 ‖ 1 + 

1 √ 

2 k 2 
‖ v T 0 ‖ 1 ≤

√ 

δ2 
2 k 1 , 2 k 2 

− t 2 

1 + t 

( 

1 √ 

k 1 
‖ u S 0 

‖ 1 

+ 

1 

4 

√ 

k 1 
‖ u S 0 ‖ 1 + 

1 √ 

k 2 
‖ v T 0 ‖ 1 + 

1 

4 

√ 

k 2 
‖ v T 0 ‖ 1 

) 
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Fig. 1. Probability of success versus sparsity. 

w  

s

I

Fig. 2. Recovery of Cameraman image. 

L  

o  

h

0 0 0 0 
⇒ 

√ 

k 2 √ 

k 1 
‖ u S 0 ‖ 1 + ‖ v T 0 ‖ 1 

≤ δ2 k 1 , 2 k 2 √ 

(1 − δ2 
2 k 1 , 2 k 2 

) / 2 − δ2 k 1 , 2 k 2 / 4 

( √ 

k 2 √ 

k 1 
‖ u S 0 

‖ 1 + ‖ v T 0 ‖ 1 

) 

(34) 

here T 0 and S 0 denote the complementary sets of T 0 and S 0 , re-

pectively. By the assumption of λ, √ 

k 2 √ 

k 1 
‖ u S 0 ‖ 1 + ‖ v T 0 ‖ 1 ≥ 1 

γ

(
λ‖ u S 0 ‖ 1 + ‖ v T 0 ‖ 1 

)
, 

√ 

k 2 √ 

k 1 
‖ u S 0 

‖ 1 + ‖ v T 0 ‖ 1 ≤ γ
(
λ‖ u S 0 

‖ 1 + ‖ v T 0 ‖ 1 

)
. (35) 

nserting (35) into (34) yields: 

λ‖ u S 0 ‖ 1 + ‖ v T 0 ‖ 1 
≤ γ 2 δ2 k 1 , 2 k 2 √ 

(1 − δ2 
2 k 1 , 2 k 2 

) / 2 − δ2 k 1 , 2 k 2 / 4 

(
λ‖ u S 0 

‖ 1 + ‖ v T 0 ‖ 1 

)
. (36) 

et ρ := 

γ 2 δ2 k 1 , 2 k 2 √ 

(1 −δ2 
2 k 1 , 2 k 2 

) / 2 −δ2 k 1 , 2 k 2 
/ 4 

. Following the last inequality and

bserving that 
λJ(u S 0 

)+ ‖ v T 0 ‖ 1 
λJ( u 

S 0 
)+ ‖ v 

T 0 
‖ 1 is a nondecreasing function of β , we

ave 

λJ(u S 0 ) + ‖ v T 0 ‖ 1 

λJ( u S ) + ‖ v T ‖ 1 

≤ lim 

β→ 0 

λJ(u S 0 ) + ‖ v T 0 ‖ 1 

λJ( u S ) + ‖ v T ‖ 1 
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R

 

 

 

 

= 

λ‖ u S 0 ‖ 1 + ‖ v T 0 ‖ 1 

λ‖ u S 0 
‖ + ‖ v T 0 ‖ 1 

≤ ρ, 

⇒ λJ(u S 0 ) + ‖ v T 0 ‖ 1 ≤ ρ
(
λJ( u S 0 

) + ‖ v T 0 ‖ 1 

)
, (37)

⇔ λJ(u ) + ‖ v ‖ 1 ≤ (1 + ρ) 
(
λJ( u S 0 

) + ‖ v T 0 ‖ 1 

)
. (38)

Let S denote the index set of k 1 largest absolute entries of x and

T denote the index set of k 2 largest absolute entries of z . Because

of the definitions of S 0 , T 0 and S, T , (37) and (38) still hold with S

in place of S 0 and T in place of T 0 , respectively. By Lemma 4.15 of

[26] , it is easy to prove 

J( u S ) ≤ J( x 

∗) − J(x ) + J(u S ) 1 + 2 J(x S ) , (39)

‖ v T ‖ 1 ≤ ‖ z ∗‖ 1 − ‖ z ‖ 1 + ‖ v T ‖ 1 + 2 ‖ z T ‖ 1 . (40)

Substituting (39) and (40) into (38) and employing (37) , we ob-

tain: 

λJ(u ) + ‖ v ‖ 1 ≤ 1 + ρ

1 − ρ
( ( λJ( x 

∗) + ‖ z ∗‖ 1 ) − ( λJ(x ) + ‖ z ‖ 1 ) 

+ 2 J(x S ) + 2 ‖ z T ‖ 1 

)
(41)

where ρ ≤ 1, which requires 

δ2 k 1 , 2 k 2 ≤
1 √ 

1 + 2(γ 2 + 

1 
4 
) 2 

. (42)

By the definitions of x ∗ and z ∗, (41) gives 

J(u ) + ‖ v ‖ 1 ≤ 2 

1 + ρ

1 − ρ

(
J(x S ) + ‖ z T ‖ 1 

)
, 

⇒ J(u ) ≤ 2(1 + ρ) 

λ( 1 − ρ) 

(
J( x S ) + ‖ z T ‖ 1 

)
, (43)

which concludes the proof. �

Remark 1. If γ = 1 , δ2 k 1 , 2 k 2 
≤

√ 

8 
33 ≈ 0 . 492 ; and if γ = 2 ,

δ2 k 1 , 2 k 2 
≤

√ 

8 
293 ≈ 0 . 165 , which is better than the bound of

[27] , which claims δ2 k 1 , 2 k 2 
≤ 1 

18 ≈ 0 . 056 for γ = 2 . 

Remark 2. If the assumptions of Theorem 1 hold, x and z are k 1 -

sparse and k 2 -sparse, respectively, then for any y ≤ 1, it is clear that

x ∗ = x holds because J(u ) = 0 ⇔ u = 0 and J( x −k 1 
) = ‖ z −k 2 

‖ 1 = 0 ,

namely, the sparse solution { x , z } is the global minimum of (5). 

Remark 3. From Theorem 1 , J( x ∗ − x ) , a function of reconstruction

error x ∗ − x , is bounded by the tails of the signal and noise. Actu-

ally, if ‖ x ∗ − x ‖ 2 ≤ r , it is easy to deduce that 

‖ x 

∗ − x ‖ 2 ≤ r 

F (r ) 

(
C 1 J ( x −k 1 ) + C 2 ‖ z −k 2 ‖ 1 

)
, (44)

which means the reconstruction error is bounded if the distance

between the reconstructed and true signals can be roughly esti-

mated. 

Remark 4. Since the convergence analysis of ADMM with three

blocks is very hard and few references are helpful in our case,

which remains an open problem for future research. Although

the convergence of the proposed method is not proved theoreti-

cally, extensive simulation results indicate convergence in empiri-
cal sense. 
 

 

. Numerical examples 

In this section, two widely used probability density func-

ions for impulsive noise, i.e., symmetric α-stable (S αS) ( ϕ(ω) =
xp ( −γ α| ω| α) , α = 1 , γ = 10 −4 ) and Gaussian mixture model

GMM) ( p n (n ) = 

∑ 2 
i =1 

c i 
πσ 2 

i 

exp 

(
−| n | 2 

σ 2 
i 

)
, σ 2 

2 
= 10 0 0 σ 2 

1 
, c 2 = 0 . 1 and

ignal-to-noise ratio (SNR) = 30 dB), are taken to model the addi-

ive noise. Simulations are implemented to evaluate the robustness

f the proposed method for sparse recovery. 

In Fig. 1 , compared with the YALL1 [5] , L1LS-ADMM [28] , Lp-

DMM [6] and LqLA-ADMM [7] , we evaluate the robustness of the

roposed method using simulated sparse signal in impulsive noise.

he simulated K -sparse signal is constructed as follows: the posi-

ions of K nonzeros are uniformly and randomly chosen and the

mplitude of each nonzero entry is generated by Gaussian dis-

ribution. A is of dimensions 40 × 200 and randomly generated

ith entries drawn from the standard Gaussian distribution, and

ach entry follows N (0 , 1 /N) . If the relative reconstruction error

s less than 10 −2 , the recovery is regarded as a success. ρ = 4 ,

= 10 −0 . 3 and λ in each method is chosen such that the best per-

ormance in terms of relative recovery error [7,29] is attained. As

an be seen, the proposed method guarantees successful recovery

or more sparse signal than the other algorithms. 

In Fig. 2 , performance of the proposed method is compared

ith the L1LS-ADMM [28] , Huber-FISTA [3] and LqLA-ADMM [7] in

mage recovery experiments. We consider A to be a partial discrete

osine transform (DCT) matrix via randomly selecting M out of N

ows of the full counterpart, where M = 0 . 5 N. It has 256 × 256 =
5536 pixels. Accordingly, the ground-truth sparse x contains the

artial DCT coefficients, which is obtained from the 2096 DCT coef-

cients with largest magnitudes using A and the real-world image,

.e., Cameraman. And then we recover the coefficients from the ob-

ervations corrupted by impulsive noise, and compare the recov-

red image with the original one. Note that the coefficients of a

eal-world image are not strictly sparse but rather approximately

ollow an exponential decay, which is referred to as compressible

30] . The proposed method significantly outperforms the other al-

orithms (except LqLA-ADMM in S αS noise) with higher peak SNR

n recovering the real-world image. 

. Conclusion 

By combining the concept of weak convexity with � 1 norm loss

unction, a robust sparse recovery framework for impulsive noise

s proposed in (2) and theoretically analyzed. In particular, if the

xtended measurement matrix satisfies the RIP with a mild con-

tant, our devised framework can robustly reconstruct the original

ignal. 
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