
R3CD: Scene Graph to Image Generation with Relation-Aware Compositional
Contrastive Control Diffusion

Jinxiu Liu, Qi Liu*

School of Future Technology, South China University of Technology
jinxiuliu0628@foxmail.com, drliuqi@scut.edu.cn

Abstract

Image generation tasks have achieved remarkable perfor-
mance using large-scale diffusion models. However, these
models are limited to capturing the abstract relations (viz.,
interactions excluding positional relations) among multiple
entities of complex scene graphs. Two main problems exist:
1) fail to depict more concise and accurate interactions via
abstract relations; 2) fail to generate complete entities. To ad-
dress that, we propose a novel Relation-aware Compositional
Contrastive Control Diffusion method, dubbed as R3CD, that
leverages large-scale diffusion models to learn abstract inter-
actions from scene graphs. Herein, a scene graph transformer
based on node and edge encoding is first designed to perceive
both local and global information from input scene graphs,
whose embeddings are initialized by a T5 model. Then a
joint contrastive loss based on attention maps and denoising
steps is developed to control the diffusion model to under-
stand and further generate images, whose spatial structures
and interaction features are consistent with a priori relation.
Extensive experiments are conducted on two datasets: Visual
Genome and COCO-Stuff, and demonstrate that the proposal
outperforms existing models both in quantitative and quali-
tative metrics to generate more realistic and diverse images
according to different scene graph specifications.

Introduction
Scene Graph to Image Generation (SG2IM) (Johnson,
Gupta, and Fei-Fei 2018) is a challenging task that aims to
generate realistic and diverse images from graph-structured
inputs. This is because most existing methods align nodes
and connections in graphs with objects and their relations
in images via image-like representations of scene graphs,
which causes suboptimal alignment due to the manually
crafted scene layouts. Nevertheless, scene graphs are rich in
describing entities and their interactions with one another
(Johnson et al. 2015)(Krishna et al. 2017). Therefore, to
study image generation from scene graphs becomes neces-
sary for users to specify through various types of specifica-
tions, e.g., labels, captions, and so on (Johnson, Gupta, and
Fei-Fei 2018).

As mentioned above, one challenge for SG2IM is be-
cause of suboptimal alignment between nodes-connections
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in graphs and object-relations in images. To address that,
some works introduced an additional layout prediction mod-
ule to initialize the spatial arrangements of objects(Ashual
and Wolf 2019; Herzig et al. 2020; Johnson, Gupta, and Fei-
Fei 2018; Yang et al. 2022), while others encoded the entire
scene graph via graph convolution network (GCN) to con-
trol the diffusion model more precisely (Yang et al. 2022).
However, these methods are limited to generating abstract
relations (excluding positional information) in scene graphs,
such as eating, chasing shaking, etc., as demonstrated in
Fig. 1. Although semantic-aware attention maps were intro-
duced to guide the generation process, and yet still cannot
perceive the abstract relations. This is because they focus
more on learning the entity shapes and layouts to match the
pixels, and yet it is hard to represent the abstract relations
with pixels, especially for those interaction features between
pixel regions of entities. Another problem is the compliance
between the generated images and original scene graphs,
which is due to the existing approaches using image-like
representations of scene graphs to create coarse sketches.

To that end, a novel Relation-aware Compositional Con-
trastive Control Diffusion framework, named R3CD, is pro-
posed, as shown in Fig. 3, which consists of twofolds: (1)
a SGFormer (Scene Graph transFormer) to refine the entity
and relation embeddings is initialized by a T5 model (Raf-
fel et al. 2020), for capturing both local and global infor-
mation; (2) a relation-aware compositional contrastive con-
trol framework with joint contrastive loss, which utilizes the
attention maps and the denoising steps as contrastive fac-
tors to guide the image generation process. The proposed
R3CD enables to facilitate the alignment between generated
images and original graphs based on various specifications.
We have evaluated the proposal on Visual Genome (Krishna
et al. 2017) and COCO-Stuff (Caesar, Uijlings, and Ferrari
2018) datasets, where R3CD is superior to other competitors
both in quantitative metrics (IS (Heusel et al. 2017), e.g.,
FID (Salimans et al. 2016)), and qualitative visualization re-
sults. We also conduct extensive ablation studies to verify
the effectiveness of each module. Our main contributions are
summarized as follows :

• We propose a novel SGFormer that encodes both nodes
and edges of input scene graphs to capture both local and
global information. Our ablation studies show that our
model outperforms existing methods.
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Figure 1: (a) R3CD versus existing layout-based methods.
Layout-based models can generate images well with posi-
tional relations, e.g., “left to”, “under”, while they fail to de-
pict more concise and accurate interactions via abstract rela-
tions, e.g., “eat”, “play”. (b) R3CD versus SGDiff. Regard-
ing multiple entities in scene graph, SGDiff often ignores
some entities, e.g., “boy”, “helmet”, while ours can generate
complete ones (all 6 entities and 5 relations in the sample).

• We adopt a triplet-level approach for compositional im-
age generation, which enables the images to not only
reflect the visual interactions between two objects in a
triplet but also address the problem of missing entities.

• We introduce the R3CD framework, which facilitates the
alignment between generated images and original graphs
based on various specifications. Our experimental results
demonstrate the superior performance of our method.

Related Works
Compositional Image Generation Diffusion models
have achieved remarkable performance in this task by mod-
eling the image generation process as a reverse diffusion
process (Ruiz et al. 2023) (Saharia et al. 2022) (Nichol and
Dhariwal 2021) (Ramesh et al. 2022). However, most ex-
isting methods rely on a single prompt to generate an image
(Saharia et al. 2022) (Ramesh et al. 2021), which may not be
sufficient to express the fine-grained details and structure of
complex scenes. To address this issue, compositional gener-
ation techniques have been proposed to enhance the ability
of Text-to-Image (T2I) diffusion models to synthesize fea-
tures from multiple text segments without relying on addi-
tional bounding box inputs (Wang et al. 2023) (Cheng et al.
2023). For example, compositional diffusion (Wang et al.
2023) (Du et al. 2023) segments complex text descriptions

Figure 2: For images with same interactions and different
objects, it is visualized that their attention maps and distri-
butions of denoising steps look similar. Motivated by that,
the proposal is developed to align the abstract relations.

into simpler parts that are easier to generate, and fuses the
outputs of these parts into a coherent image. However, this
method is restricted to conjunction and negation operators,
and does not consider the specific pose features exhibited by
objects when interacting with other objects, such as hand-
shakes, hugs, riding, etc. In this paper, we propose a novel
compositional generation method for scene graph genera-
tion based on diffusion models, which can integrate both ab-
stract relations and entities to enhance the expressive ability
of diffusion models for various information in scene graphs.
Specifically, we assign a separate noise prediction module
for abstract information generation, which leverages a Gaus-
sian denoising module to improve the expressive ability and
capture abstract information more accurately.

Image Generation from Scene Graphs Image generation
from scene graphs (SGs) is a challenging task that aims to
generate images from graphical representations (Johnson,
Gupta, and Fei-Fei 2018) (Krishna et al. 2017). Existing
methods for this task can be divided into two categories:
layout-based methods (Johnson, Gupta, and Fei-Fei 2018;
Ashual and Wolf 2019; Liu et al. 2022; Du et al. 2023) and
graph-based methods (Feng et al. 2022; Yang et al. 2022;
Li et al. 2022; Wang et al. 2023; Wu, Wei, and Lin 2023).
Layout-based methods first map the SG to a scene layout
and then refine the scene layout into a realistic image us-
ing a generative model. However, they may suffer from rela-
tion ambiguity and entity missing problems, as not all con-
nections in the SG can be accurately translated into spatial
layouts. Moreover, they may introduce irrelevant informa-
tion in the intermediate scene layout representations, which
complicates the training of downstream generative models.
In contrast, graph-based methods encode semantic informa-
tion from the SG directly and avoid the limitations of scene
layouts. But they still face challenges in generating abstract
relations that are hard to express with pixels, such as eating
and looking. Therefore, in this paper, we propose a scene
graph global-awared node and edge encoding method and
a novel method to relearn abstract relations in order to en-
hance the diffusion model’s ability for complex SGs un-
derstanding. We do not directly use explicit image infor-
mation to express relation information, but apply attention
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Figure 3: The whole pipeline of R3CD, where node and edge embeddings are encoded by the proposed SGFormer and then are
fed to compositional generation model under the guidance of relation-aware contrastive control loss. The joint contrastive loss
is designed on attention maps and diffusion steps, where “Pos rel”, “Anc rel”, “Neg rel” denote positive, anchor, and negative
samples’ relationships, respectively.

maps and denoising steps of a diffusion model controlled by
contrastive control in compositional generation to represent
abstract relation information and generate images from the
complex scene graph.

Method
In this section, we introduce the proposed R3CD in detail,
including the SGFormer, the relation-aware contrastive con-
trol loss and triplet-level compositional generation, as shown
in Fig. 3.

SGFormer
As shown in Fig. 4, SGFormer comprises two components:
(1) The graph attention layer to compute attention scores be-
tween node and edge features, and aggregate information
from neighboring nodes and edges; (2) The graph update
layer, to update the node and edge features based on the ag-
gregated information.

The node and edge embeddings are initialized by a T5
model (Raffel et al. 2020). The T5 model is a pre-trained
text-to-text transformer to generate natural language repre-
sentations for various tasks. Let G = (V,E) be a directed
scene graph (SG), where V is the set of nodes (entities) and
E is the set of edges (relations). Each node v ∈ V and each
edge e ∈ E have a text label. The node and edge embed-
dings h are defined as h0

v and h0
e. For each layer l, the atten-

tion scores between nodes and edges based on their features
and types are:

αl
v→e =

exp
(
σ
(
W l

v→e[h
l−1
v ;hl−1

e ; tv→e]
))∑

u∈N(v) exp
(
σ
(
W l

v→u[h
l−1
v ;hl−1

u ; tv→u]
))

(1)

αl
e→v =

exp
(
σ
(
W l

e→v[h
l−1
e ;hl−1

v ; te→v]
))∑

f∈N(e) exp
(
σ
(
W l

e→f [h
l−1
e ;hl−1

f ; te→f ]
))

(2)
where σ denotes an activation function, αl

v→e and αl
e→v

are the attention scores from node v to edge e and from
edge e to node v, respectively. N(v) and N(e) are the sets
of neighboring nodes and edges of v and e, respectively.
W l

v→e,W
l
v→u,W

l
e→v, and W l

e→f are learnable weight ma-
trices; tv→e, tv→u,te→u and te→f are vectors to represent
different types of nodes and edges; [ ] denotes the concate-
nation operation.

Next, we use the attention scores to aggregate information
from neighboring nodes and edges:

h̃l
v =

∑
e∈N(v)

αl
v→eh

l−1
e , h̃l

e =
∑

v∈N(e)

αl
e→vh

l−1
v (3)

where h̃l
v and h̃l

e are the aggregated node and edge features,
respectively.

Finally, we use different feed-forward networks to update
the node and edge features based on the aggregated informa-
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Figure 4: The architecture of SGFormer.

tion:

hl
v = FFNv(h

l−1
v + h̃l

v), hl
e = FFNe(h

l−1
e + h̃l

e) (4)

where hl
v and hl

e are the updated node and edge embeddings,
respectively; and FFNv and FFNe are two different feed-
forward networks with residual connections and layer nor-
malization.

Relation-aware Diffusion Contrastive Control
As discussed before, layout-based models suffer from rela-
tion ambiguity and entity missing problems. Motivated by
that attention maps can provide free token-region associa-
tions in trained T2I models (Hertz et al. 2022), attention
maps are utilized as position information. Attention maps
are initially generated to indicate the positions of each enti-
ties in image. Then a joint contrastive loss based on attention
maps and diffusion denoising steps is proposed to control the
image generation process.

Attention Map Contrastive Learning The attention map
represents the similarity between pixel in image and node in
scene graph. It is expected that the attention map can cap-
ture the spatial layout and relative position of the entities
in scene graph, regardless of different specific types. For
example, the attention map for the triplet (cat, eat, apple)
should be similar to the one for (dog, eat, banana), but differ-
ent from the one for (cat, chase, dog). Therefore, we design
a contrastive loss objective to minimize the similarity be-
tween attention maps that correspond to different relations,
and maximize the similarity between those that correspond
to the same relations. We apply the attention maps of triplets
with the same abstract relation as positive samples, and ones

with different relations but similar entities as negative sam-
ples.

Given a batch of N triplets from different scene
graphs, we first generate their corresponding attention maps
A1, A2, ..., AN for each edge using the diffusion model
based on scene graphs. Then, for each triplet i, we randomly
sample another triplet j from the same batch that has the
same abstract relation as i, and use their attention maps Ai

and Aj as positive samples. Similarly, we randomly sample
another triplet k from the same batch that has different rela-
tion but same or semantically similar entities and use their
attention maps Ai and Ak as negative samples, which disen-
tangles the layout and appearance. The intuition is that the
attention maps of positive samples should have high similar-
ity, while the attention maps of negative samples should have
low similarity. The cosine similarity is applied as the metric
to measure the similarity between two attention maps. The
attention map loss for relation i is defined as:

Li = − log
ecos(Ai,Aj)/τ

ecos(Ai,Aj)/τ +
∑

k ̸=i e
cos(Ai,Ak)/τ

(5)

where τ is a temperature parameter that controls the
sharpness of the distribution. The attention map loss can
be minimized by increasing the cosine similarity of positive
pairs and decreasing the cosine similarity of negative pairs.
The total attention map loss is then computed as:

Latt =
1

N

N∑
i=1

Li (6)

Diffusion Steps Contrastive Learning The diffusion
model generates images by adding noise to an initial im-
age at each time step, and then denoising it using a UNet
(Ronneberger, Fischer, and Brox 2015). The noise reflects
how much uncertainty there is about each pixel value at each
time step. Ideally, the noise from the first few denoising steps
should match the high-level information in the scene graph,
which helps the model comprehend the abstract relations
better than aligning the relation information with the pixels
directly. To promote this property, we devise a contrastive
loss objective that aligns the noise distributions predicted by
the UNet with the abstract relation information. We use the
predicted noise distributions for two corrupted images that
share the same triplet as positive samples, and for two cor-
rupted images that have different triplets as negative sam-
ples.

Given a batch of N triplets embedding encoded by SG-
Former, we first generate their corresponding images using
a trained diffusion model. Then we corrupt each image by
adding Gaussian noise at time step t, as a result of n cor-
rupted images x1, x2, . . . xn. The UNet predicts a noise dis-
tribution ϵθ(zt, t, c) for each pixel in each noisy image χn,
where zt is a latent variable representing a noisy image at
time step t, and c is a vector representing the triplet rep-
resentation vector extracted from the scene graph. We then
sample a new noisy image xn from the predicted noise for
each χn.
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For each triplet i, we randomly sample another triplet j
from the same batch with the same abstract relation as i, and
use their noises ϵθ(zt, t, ci) and ϵθ(zt, t, cj) as positive sam-
ples. Similarly, we randomly sample another triplet k from
the same batch with different relation but similar entities as
i and take their noise ϵθ(zt, t, ck) as negative samples. We
use the L2 norm as our similarity measure function. There-
fore, we define f(zn, t, c) = ϵθ(zt, t, c) and measures the
similarity between two noise distributions as:

E(ϵθ(zt, t, ci), ϵθ(zt, t, cj)) = −∥ϵθ(zt, t, ci)− ϵθ(zt, t, cj)∥2
(7)

The L2 norm is inversely proportional to the Euclidean
distance between the noise distributions, implying that a
higher value indicates greater similarity. We propose a con-
trastive loss function that minimizes the L2 norm for positive
pairs and maximizes it for negative pairs:

Lcont = − 1

N

T∑
t=T ′

N∑
i=1

log
eE(ϵθ(zt,t,ci),ϵθ(zt,t,cj))/τ∑
k ̸=i e

E(ϵθ(zt,t,ci),ϵθ(zt,t,ck))/τ

(8)
Where T ′ = T − ∆t, T and T ′ are the first few diffusion
steps that can capture the high-level features of the image
rather than the details. The contrastive loss function encour-
ages the model to generate noise distributions that are simi-
lar for images with the same relation and dissimilar for im-
ages with different relations. Therefore, the model can learn
to extract the abstract relation information from the scene
graph and transfer it to the image domain.

Total Loss Function and Optimization The loss function
of our model is composed of three terms: the diffusion loss,
the attention map contrastive loss, and the diffusion steps
contrastive loss. The diffusion loss is the standard loss func-
tion used for training diffusion models, it can be written as:

Ldiff(θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, τθ(c))∥2

]
(9)

where θ is the whole model parameter, t is a random time
step sampled from a uniform distribution, X0 is an origi-
nal image sampled from the data distribution, ϵ is a stan-
dard Gaussian noise variable, xt is a noisy image obtained
by adding ϵ to x0. τθ(c) is all of the relation representation
vector extracted from the scene graph by SGFormer, and
ϵθ(xt, t, τθ(c)) is a predicted noise distribution conditioned
on xt, t, and τθ(c).

The other two components are the attention map con-
trastive loss and the diffusion steps contrastive loss. We com-
pute the total loss as a weighted sum of these components:

Ltot(θ) = Ldiff (θ) + λLatt(θ) + γLcont(θ) (10)
where λ and γ are trade-off parameters to control the
weights of the contrastive losses. The gradient of the total
loss with respect to θ is computed by applying the chain
rule:

∇θLtot(θ) = ∇θLdiff (θ) + λ∇θLatt(θ) + γ∇θLcont(θ)
(11)

Triplet-level Compositional Generation
Compositional generation is a technique that creates con-
tents for different regions in an image, based on multiple
layouts and corresponding prompts. Following (Feng et al.
2022), we use attention maps to control the generation of
various scenes in each region. However, the existing works
(Cheng et al. 2023; Wang et al. 2023; Feng et al. 2022)
neglect the interaction relationships between objects, and
they only use the single-object layout as guidance for the
diffusion model, which makes them unaware of the inter-
object relations, especially the abstract ones. Unlike them,
we generate images at the triplet level rather than the object
level. Specifically, we use edge embedding attention maps
as layout guidance to generate the scene compositionally at
the node-edge-node triplet-level during the diffusion model
sampling process, where each triplet corresponds to an edge
embedding attention map encoded by SGFormer and based
on the two contrastive losses of UNet that we trained, which
can capture the relationship information of adjacent nodes
on the edge.

Experiments
In this section, we evaluate the effectiveness of our model
on two datasets: Visual Genome (Krishna et al. 2017) and
COCO-Stuff (Caesar, Uijlings, and Ferrari 2018), where
R3CD is superior to other competitors both in quantitative
metrics (IS (Heusel et al. 2017), e.g., FID (Salimans et al.
2016)), and qualitative visualization results. We also con-
duct extensive ablation studies to verify the effectiveness of
each module.

Experiment Settings
We conduct experiments to compare R3CD with the state-
of-the-art SG2IM method using diffusion model (Yang et al.
2022) and the previous GAN-based methods (Ashual and
Wolf 2019; Herzig et al. 2020; Johnson, Gupta, and Fei-
Fei 2018). We adopt their evaluation settings for all experi-
ments on images of 256×256 resolution. We use Adam opti-
mizer (Kingma and Ba 2014) to train diffusion models with
a learning rate of 5e-5, a batch size of 16, and 700,000 it-
erations on RTX 3090. For the contrastive loss module, we
choose the trade-off parameters as 0.01, and as 0.02.

Quantitative Comparisons
Previous methods for image generation from scene graphs
can be classified into three categories: GAN-based (Ashual
and Wolf 2019; Herzig et al. 2020; Johnson, Gupta, and Fei-
Fei 2018), layout prediction (Cheng et al. 2023), and scene
graph encoding-based diffusion model (Yang et al. 2022).
However, these methods have limitations such as mode col-
lapse, high complexity, layout errors, and global information
unawareness. In contrast, our method achieves superior per-
formance on COCO-Stuff and Visual Genome datasets in
terms of IS and FID metrics, as shown in Table 1. We at-
tribute this to our novel SGFormer encoder, which can cap-
ture both local and global information from the scene graph.
Our contrastive control module enables the model to learn
the abstract relations in the scene graph without introducing
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Method COCO(IS)↑VG(IS)↑COCO(FID)↓VG (FID)↓
Real Img 30.7 27.3 - -
Sg2Im
(Fei-Fei 2018) 8.2 7.9 99.1 90.5
WSGC
(Herzig et al. 2020) 6.5 9.8 121.7 84.1
SOAP
(Wolf 2019) 14.5 - 81.0 -
PasteGAN
(Li et al. 2019) 12.3 8.1 79.1 66.5
KCGM
(Lin 2023b) – 11.6 – 27.4
SGDiff
(Yang et al. 2022) 17.8 16.4 36.2 26.0
Ours
(GCN) 16.5 16.0 38.6 28.6
Ours
(SGFormer) 17.5 17.3 35.7 25.2
Ours
(SGFormer+R3CD) 19.5 18.9 32.9 23.4

Table 1: Performance comparisons on COCO Stuff (COCO)
and Visual Genome (VG) datasets via IS and FID metrics.

an extra layout prediction module, and triplet-level composi-
tional generation which generates images by splitting them
into triplets and learning each triplet separately instead of
the whole image, thereby improving the training efficiency
and the granularity and the flexibility of the generation.

Qualitative Evaluations
In this part, we present some qualitative results of our model
on two aspects: abstract relation generation and graph-to-
image generation. We compare our model with SGDiff
(Yang et al. 2022), which is the state-of-the-art method based
on diffusion models for SG2IM generation.

Abstract Relation Generation To demonstrate our
model’s ability to generate abstract relations, we present the
attention maps and generated images from scene graphs with
complex or ambiguous relations in Fig. 5. We also com-
pare them with the results of SGDiff(Yang et al. 2022) to
highlight the advantages of our model. In order to make
SGDiff(Yang et al. 2022) consistent with our model in terms
of node and edge initialization and facilitate its extension
to unseen abstract relations, we modify the initial node and
edge with T5 embedding. From the comparison of the at-
tention maps, we observe that our model can capture the
key interaction features among different entities in the im-
age. Moreover, for a given relation, more attention weights
are not only allocated to the adjacent nodes, but also to the
global entities that are linked or semantically related to it by
the scene graph, which reflects our model’s global aware-
ness. From the generated images, we discover that our model
can produce clearer individual entities due to the compo-
sitional generation strategy, and generate images that re-
flect the interaction features with other entities, rather than
just generating isolated entities. For instance, when generat-
ing (scene graph: a red cat rides on a yellow dog), SGDiff
can only generate two dogs without capturing their relation,

Figure 5: Visualization results of relation features. Accord-
ing to the heat map comparison, our method can capture
more critical features that describe the relations than the
SGDiff method.

while our method solves this problem and can generate both
entities and their abstract interactive relation.

Graph-to-Image Generation To evaluate our model on
complex scene graphs with multiple entities and relations,
we compare our generated images with SGDiff’s in Fig. 6.
Our model outperforms SGDiff in image quality and diver-
sity, producing more realistic and detailed images that re-
spect the scene graph specifications. Our model also cap-
tures the semantic and spatial information of the scene
graphs better, such as the relative positions, sizes, orienta-
tions, colors, and shapes of different entities. For example, in
the second image on the right side of Fig. 6, SGDiff misses
the tree and the door entities, and ignores the “in front of”
relation. It also fails to generate the (door, has, window) re-
lation correctly. In contrast, our method generates all the en-
tities and relations accurately.

Ablation Study
In this subsection, we quantify the effectiveness of each
component of our method. We conduct ablation studies to
show the advantage of SGFormer in capturing global seman-
tic relations over GCN-based methods that encode local re-
lations at the graph level. We also highlight the importance
of the two contrastive losses in R3CD for capturing abstract
relations in scene graphs.

Relation and Object Generation Accuracy To demon-
strate the improvement of our method , We evaluate our
model in generating images that respect the relations and
objects in the scene graphs. We compare with a GCN-based
baseline (Yang et al. 2022) and ablate each module of our
model: SGFormer, compositional generation, and R3CD.
Table 2 shows the results. Our model outperforms the base-
line on both tasks, indicating better semantic and spatial un-
derstanding of the scene graphs. Each component improves
the performance. SGFormer refines the node and edge em-
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Figure 6: Visual examples of graph-to-image generation in complex scene.

Methods G2I-ACC ↑ I2G-ACC ↑
Obj (GCN) 70.1 71.2

Obj + Rel (GCN) 72.4 (+2.3) 72.3 (+1.1)
Obj + Rel (SGFormer) 72.9 (+2.8) 72.7 (+1.7)

SGFormer(Compositional) 73.2(+3.1) –
SGFormer (R3CD) 73.8(+3.7) –

Table 2: Ablation study of SGFormer and R3CD on relation
synthesis tasks. G2I-ACC stands for the average accuracy
Graph-to-Image task, I2G-ACC stands for the average accu-
racy Image-to-Graph tasks.

beddings with global and local information. Compositional
generation improves the relation accuracy by generating and
fusing each component. R3CD improves both relation and
object accuracy by controlling the attention maps and dif-
fusion steps with contrastive learning. These results confirm
that our model generates images that comply with the scene
graphs, and each module is necessary for this goal.

Image Generation from Scene Graph To evaluate the ef-
fectiveness of each module, we perform an ablation study
on the task of image generation from scene graphs using
FID and IS metrics. We compare with baselines of one-hot
encoding, layout prediction, and GCN-based diffusion, as
shown in Table 3. Table 3 shows that each component of
our method improves the performance on both metrics and
the complete method achieves the best result. SGFormer en-
hances the semantic encoding of nodes and edges with local
and global information. Attention map contrastive loss en-
sures the spatial consistency of entities under the same rela-
tions by minimizing their attention map distance. Diffusion
steps contrastive loss ensures the interaction consistency of
entities under the same relations by aligning their noise dis-
tributions with relation embeddings. These results confirm
that our method generates images from scene graphs effec-

Technique IS ↑ FID ↓
One-hot 9.9 87.1
Layout 13.1 52.7

GCN Diffusion 16.0 28.6
SGFormer 17.3 25.2

SGFormer + Att map Loss 17.5 24.6
SGFormer + Diff Loss 17.8 24.0

SGFormer + Att Map Loss + Diff Loss 18.9 23.4

Table 3: Ablation study of SGFormer and R3CD on genera-
tion fidelity and diversity.

tively, and each module is necessary for this goal.

Conclusion
In this paper, we propose R3CD, a novel framework for im-
age generation from scene graphs that leverages large-scale
diffusion models and contrastive control mechanisms, which
capture the interactions between entity regions and abstract
relation in scene graph. Our method consists of two main
components: (1) SGFormer, a transformer-based node and
edge encoding scheme that captures both local and global
information from scene graphs; (2) Relation-aware Diffu-
sion contrastive control: a contrastive learning module that
can align the abstract relation features and the image fea-
tures across different levels of abstraction, and enhance the
model to generate images that reflect the abstract relations.
We have conducted extensive experiments on two datasets:
Visual Genome and COCO-Stuff, and demonstrated that our
method outperforms existing methods in terms of both quan-
titative and qualitative metrics. We have also shown that our
method can generate more realistic and diverse images that
respect the scene graph specifications, especially for abstract
relations that are hard to express with entity stitching.
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