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ABSTRACT In this paper, the problem of multidimensional single-tone frequency estimation of sinusoids
embedded in white Gaussian noise is investigated. By extracting the two-dimensional (2-D) slice matrices
from the multidimensional data, we construct a covariance matrix associated with only one dimension, from
which the corresponding frequency is estimated with the utilization of a QR decomposition based iterative
method. The frequencies of the remaining dimensions are then obtained following similar procedures.
Moreover, the mean square error of the estimated frequencies is devised. The computer simulations are also
included to evaluate the performance of the proposed method by comparing with the several state-of-the-art
algorithms and Cramér–Rao lower bound.

INDEX TERMS Frequency estimation, QR factorization, parameter estimation.

I. INTRODUCTION
The problem of frequency estimation for multidimensional
sinusoids has been an important research topic due to its
important applications in engineering and areas such as
radar, sonar, speech analysis, astronomy, array signal pro-
cessing and nuclear magnetic resonance [1]–[8]. Various
high-resolution frequency estimation methods have been pro-
posed to solve this problem. The main concerns of han-
dling multidimensional signals are reducing the computation
complexity and reducing the dimension of signals. Such as
the multidimensional folding (MDF) [9], the improved MDF
(IMDF) [10], Unitary ESPRIT [11], MUSIC [12], [13], and
RARE [8] methods, these methods solve the frequency esti-
mation problem by first reducing the dimension of multi-
dimensional signals. While HOSVD [14] algorithm directly
utilizes tensor decomposition technique to solve the multi-
dimensional harmonic retrieval problem, but the subsequent
joint diagonalization algorithm takes much time in compu-
tation in order to avoid the problem of parameters pairing.
In recent years, a computationally efficient method utilizing
subspace and projection separation approaches (SPSA) [15]
is proposed. Reference [16] proposes an algorithm whose
perspective idea is to rearrange the multidimensional
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sampling arrays into a series of 2-D matrices, which is then
utilized to construct a matrix from which the 2-D parame-
ters can be estimated from its eigenvalues and eigenvectors.
A tensor principal-singular-vector utilization for modal anal-
ysis (TPUMA) algorithm is developed in [17] for multidi-
mensional harmonic retrieval. An N-D ESPRIT algorithm
is proposed based on low rank decomposition of multi-
level Hankel matrices formed by the multidimensional sig-
nal in [18], and its computational complexity is reduced
by truncated singular value decomposition (SVD). In [19],
an efficient sparse estimation approach (N-D Sparse) is
developed for multidimensional harmonic retrieval. Most
of the proposed methods can handle both multi-tone and
single-tone frequency estimation problems. While [20] pro-
poses a correlation-based method for single-tone frequency
estimation of multidimensional data.

Inspired by the idea of reducing the data dimension by
rearranging the multidimensional sampling arrays into a
series of 2-D matrices [15], [16], in this paper, we contribute
an accurate single-tone frequency estimation for multidi-
mensional signal. By extracting two-dimensional (2-D) slice
matrices from the multidimensional data, we construct a
covariance matrix associated with only one dimension. Then
the QR decomposition is employed to the covariance matrix,
and an iterative procedure operates on the first row of upper
triangular matrix R of the QR factorization is utilized to
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estimate the corresponding frequency. The frequencies of
the remaining dimensions are estimated following a similar
procedure as well.

The rest of this paper is organized as follows. In Section II,
we state the problem and derive the proposed algorithm.
In Section III, the performance analysis of proposed algo-
rithm in term of theoretical mean square error (MSE) is
formulated. And in Section IV, numerical simulations are
included to evaluate the performance of the proposed algo-
rithm by comparing with the correlation-based methods
C-1 and C-2 [20], IMDF method [10], TPUMAmethod [17],
N-D ESPRIT algorithm [18], and N-D Sparse algorithm [19]
as well as the Cramér-Rao lower bound (CRLB) [21]. Finally,
conclusions are drawn in Section V.

Notation: scalars, vectors and matrices are denoted by
italic, bold lower-case and bold upper-case symbols, respec-
tively. The angle of a is represented as 6 (a). The derivative
of a function f (a) with respect to a is f ′(a). The estimate
of A is Â and its rank is rank(A), while T, H, Ast , and −1

are the transpose, conjugate transpose, complex conjugate,
inverse, respectively. The mth element of A is [A]m and the
(m, n) entry of A is either denoted by [A]m,n or am,n. The IM
symbolizes the M ×M identity matrix and 0M×N represents
the M × N zero matrix. Toeplitz(a, bT) is a Toeplitz matrix
with first column a and first row bT. E is the expectation
operator. Finally, C is used to represent the sets of complex
numbers.

II. ALGORITHM DEVELOPMENT
A. SIGNAL MODEL
The observed single-tone multidimensional signal model is

xm1,m2,··· ,mR = sm1,m2,··· ,mR + nm1,m2,··· ,mR ,

mr = 1, 2, · · · , Mr , r = 1, 2, · · · , R, (1)

where

sm1,m2,··· ,mR = γ

R∏
r=1

ejωrmr , (2)

is the noise-free signal with R ≥ 3 being the number
of sinusoids. γ is the unknown complex-valued amplitude,
ωr ∈ (−π, π) is the unknown frequency in the r th dimen-
sion. nm1,m2,··· ,mR is the additive zero-mean complex white
Gaussian noise with unknown variance σ 2

n . Our task is to find
the frequencies ωr from the givenM =

∏R
r=1Mr samples of

xm1,m2,··· ,mR .

B. ALGORITHM DEVELOPMENT
We first rewrite the signal model in tensor form [14], [15]

X = S +N , (3)

where {X ,S,N } ∈ CM1×M2×···×MR , [X ]m1,m2,··· ,mR =

xm1,m2,··· ,mR , [S]m1,m2,··· ,mR = sm1,m2,··· ,mR , and
[N ]m1,m2,··· ,mR = nm1,m2,··· ,mR .
Direct manipulations on tensor data demand a high compu-

tational complexity [15]. Following the idea in [15] to reduce

the dimension of X , we consider the multidimensional sam-
pling array as the collection of 2-D slice matrices by defining
X r1,r2 as follows

X r1,r2 = {X (m1, · · · ,mr1−1, :,mr1+1, · · · ,mr2−1,

:,mr2+1, · · · ,mR)}, (4)

where

mr = 1, 2, · · · ,Mr , r = 1, 2, · · · ,R and r 6= 1, 2.[
X (m1, · · · ,mr1−1, :,mr1+1, · · · ,mr2−1 ,

:,mr2−1, · · · ,mR)
]
mr1 ,mr2

= xm1,m2,··· ,mR . (5)

Following similar idea, S1,r is a noise-free 2-D matrix set
of S, then S(:, · · · ,mr−1, :,mr+1, · · · ,mR) can be written
as [15]

S(:, · · · ,mr−1, :,mr+1, · · · ,mR) = g1λ1,rgHr , (6)

which contains the frequency information corresponding to
the first and r th dimension, where

gr =
[
ar , a2r , · · · , a

Mr
r

]
, (7)

a1 = ejω1 , ar = e−jωr , r = 2, 3, · · · ,R, (8)

λ1,r = γ

R∏
i=2I6=r

ejωimi . (9)

To extract the signal subspace from the 2-D data matrix set,
we compute the covariance matrix of matrix setS1,2, denoted
by Ẑ1,

Ẑ1 =
M1 M2

M

M3∑
m3=1

M4∑
m4=1

· · ·

MR∑
mR=1

S(:, :,m3, · · · ,mR)

·SH(:, :,m3, · · · ,mR). (10)

Then the expected value of Ẑ1, denoted byZ1, has the form

Z1 =
M1 M2

M

M3∑
m3=1

M4∑
m4=1

· · ·

MR∑
mR=1

g1λ1,2gH2 · g2λ
∗

1,2g
H
1

=
M1 M2

M
g1

 M3∑
m3=1

M4∑
m4=1

· · ·

MR∑
mR=1

λ1,2gH2 · g2λ
∗

1,2

 gH1 .

(11)

By denoting

β1 =
M1 M2

M

M3∑
m3=1

M4∑
m4=1

· · ·

MR∑
mR=1

λ1,2gH2 · g2λ
∗

1,2 ∈ C, (12)

we have

Z1 = β1g1gH1 , (13)

where Z1 contains only one dimension’s frequency informa-
tion, then Z1 can be decomposed by eigenvalue decomposi-
tion to obtain the signal subspace then use subspace based
method [15] to estimate the corresponding frequency.
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On the other hand, it is easy to deduce that the ele-
ments along the columns or rows of Z1 satisfy the LP
property [22], [23]. That is, the LP coefficients of row are
characterized by g1. This implies that

zm1,n1 + czm1,n1−1 = 0,

m1 = 1, 2, · · · ,M1, n1 = 2, 3, · · · ,M1, (14)

where zm1,n1 are the elements of Z1, c = −ejω1 is the LP
coefficient [24], the rank of matrix Z1 is 1 for single-tone
frequency.

Then Z1 can be factorized using QR decomposition [22],
[23], [25] as

Z1 = QR, (15)

where Q ∈ CM1×M1 is an orthonormal matrix and R ∈
CM1×M1 is an upper triangular matrix. Denoting Q =[
q1 q2 · · · qM1

]
and R =

[
r1 r2 · · · rM1

]T, we have qHi qj =
0 if i 6= j, and otherwise it is equal to 1, while r2, r3, · · · , rM1

are all equal to 0M1×1 since rank(Z1) = 1. We further let
Z1 =

[
z1 z2 · · · zM1

]
and z1 =

[
z1,1 z2,1 · · · zM1,1

]T, which
results in R1 =

[
qH1 z1 qH1 z2 · · · q

H
1 zM1

]T. Analogously to
(14), R1 has the same LP property as in the row of Z1

[r1]l + c[r1]l−1 = 0, l = 2, 3, · · · ,M1. (16)

We can express (16) in matrix form as

Ar1 = uc− f = 0(M1−1)×1, (17)

where

A = Toeplitz
([
c 01×(M1−2)

]T
,
[
c 1 01×(M1−2)

])
, (18)

u =
[
[r1]1 [r1]2 · · · [r1]M1−1

]T
, (19)

f = −
[
[r1]2 [r1]3 · · · [r1]M1

]T
. (20)

When noise is present, we perform QR decomposition on
the constructed covariance matrix Z1 usingX 1,r to obtain Q
and R. Then (13) is rewritten as

Z1 = β1g1gH1 + σ
2
n IM1 , (21)

where σ 2
n IM1 is the noise. (21) can be expressed into a matrix

form

Z1 = S1 + N1, (22)

where S1 = β1g1gH1 ,N1 = σ
2
n IM1 . Hence, (17) will no longer

be a zero vector and we denote it by e = uc − f, with e ∈
C(M1−1)×1. For the linear model of (17), the weighted least
squares (WLS) estimate of c is [4]

ĉ = argmin
c

eHWe =
(
uHWu

)−1
uHWf, (23)

where W is a symmetric weighting matrix and its optimal
choice is derived using the covariance for e [25]

W = σ 2
n

[
E
{
eeH

}]−1
= (AAH)−1, (24)

and its optimal choice using the covariance for e is derived as
follows:

TABLE 1. Estimation algorithm for ωr .

Using (22), the property of QR decomposition, andAST =
0(M1−1)×M1 , we can express e as

e = Ar1 = AZT
1q
∗

1 = A(S1 + N1)Tq∗1 = ANT
1q
∗

1. (25)

Hence we have:

eeH = ANT
1q
∗

1q
T
1 (N

T
1 )

HAH. (26)

As matrix Q is an orthonormal matrix, q∗1q
T
h = IM1 when

h = 1, otherwise it is equal to 0M1×M1 , and E
{
NT
1 (N

T
1 )

H
}
=

σ 2
w IM1 , the expected value of (26) is then

E{eeH} = σ 2
nAA

H. (27)

Substituting (27) into (24) yields theweightingmatrix expres-
sion.

The frequency estimate in the first dimension is

ω̂1 = 6 (ĉ). (28)

As in the ideal case, the weight is a function of the unknown c,
we solve ĉ to relax (23) in an iterative manner. We initialize
D using the identity matrix IM1−1, then iterate between (23)
and (24), and terminate the algorithm after I iterations.

Since frequency pairing is not needed for single-tone
frequency estimation, we then employ the first row of R
in the QR factorization of Zr , r = 2, 3, · · · ,R, which
are constructed following (4) to (11), to compute ωr , r =
2, 3, · · · ,R in a similar manner as shown in Table 1.

III. PERFORMANCE ANALYSIS
In this section, we derive the mean and MSE expressions
for the frequency estimate to analyze the performance of the
proposed algorithm. As seen in Section II that the proposed
QR decomposition based method estimates the frequency of
each dimension in a separate manner. Then the data model
for each dimension is in fact 1-D which we can apply [26] to
carry out the performance analysis. The basic idea is to utilize
(23), with which ĉ satisfies

ĉ = (uHWu)−1uHWf, (29)

and we construct a function f (č) based on (29) as follows

f (č) = uHWuč− uHWf

= uHW(uč− f), (30)

such that f (ĉ) = 0. With sufficiently large SNR and data size,
ĉ will have a value close to c. Using the Taylor’s series to
expand f (ĉ), we obtain

0 = f (ĉ) ≈ f (c)+ f
′

(c)(ĉ− c), (31)
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where f
′

(c) is the first derivative of f (č) evaluated at č = c,
then we have

ĉ ≈ c−
f (c)
f ′ (c)

, (32)

and we obtain E{ĉ} ≈ c [27]. On the other hand, the MSE of
ĉ is [27]

MSE(ĉ) = E{(ĉ− c)(ĉ− c)∗}

=
σ 2
n

uHWu
. (33)

According to [28] the MSE of ω1 with SNR = σ 2
s /σ

2
n , where

σ 2
s =

(∑M1
m1=1
···
∑R

mR=1
|sm1,m2,··· ,mR |

2
)

M , are

MSE(ω̂1)≈
MSE(ĉ)
2|c|2

=
σ 2
n

2uHWu
≈

6

M (M2
1 − 1)SNR

. (34)

Following the same idea above, we obtain the general form
of MSE for ωr is

MSE(ω̂r ) ≈
6

M (M2
r − 1)SNR

, (35)

which is approximate to the CRLB [21] of frequency for the
r th dimension. The derivatives ofmean andMSE indicate that
our proposed algorithm is effective and accurate.

IV. NUMERICAL EXAMPLES
Computer simulations have been conducted to evaluate the
proposed QR decomposition based algorithm. For simplicity,
we use three-dimensional (3-D) sinusoids in the presence of
white Gaussian noise in the simulation. In each dimension,
we terminate the iterative procedure after two iteration (i.e.,
I = ∈) because no significant improvement was achieved for
more iterations. The MSE in comparison is computed using
E{(ωr − ω̂r )2}, with the CRLB to measure the performance
of the proposed method. The correlation-based methods
C-1 and C-2 in [20], and IMDF algorithm in [10] TPUMA
method [17], N-D ESPRIT algorithm [18], and N-D Sparse
algorithm [19] are included for comparison. Note that a Fast
N-D ESPRIT algorithm is also developed in [18], but its
performance is similar with the N-D ESPRIT algorithm,
so we only compare the computation time of the Fast N-D
ESPRIT algorithm in the computation comparison experi-
ment.We scale the noise to produce different SNR conditions.
The amplitude is set to γ = 1. All results provided are
averages of 500 independent runs. Our simulations are per-
formed using MATLAB R2017b on a system with 1.70 GHz
intel Xeon CPU E5-2609 and 32 GB RAM, under a 64-bit
Windows 10 operating system.

In the first experiment, we set the sinusoidal frequency
ω1 = 0.3π , ω2 = 0.05π , ω3 = 0.9π , which are the
frequencies of the first dimension, second dimension, and
third dimension, respectively. The dimensions of the 3-D data
areM1 = M2 = M3 = 15. The frequency MSE results of the
three dimensions are plotted in Figures 1, 2, and 3, respec-
tively. As seen from all these three figures, the proposed

FIGURE 1. MSE versus SNR with M1 = M2 = M3 = 15 (1st dimension).

FIGURE 2. MSE versus SNR with M1 = M2 = M3 = 15 (2nd dimension).

FIGURE 3. MSE versus SNR with M1 = M2 = M3 = 15 (3rd dimension).

algorithm can achieve optimal performance at sufficiently
high SNRs, and better than the correlation-based methods
C-1 and C-2, which aligns with our analysis in Section 3.
On the other hand, even though theMSE of the other methods
in comparison is lower than the proposed method at small
SNRs, the proposed method outperforms the other methods
when the SNR is larger than −5 dB.

In the next experiment, we compare the performance of the
proposed method with different numbers of samples. We set
M1 = 15, M2 = 14, M3 = 13. The other data settings
remain the same as that in experiment 1. The result is plotted
in Figures 4-6. It is seen that the MSEs of the proposed
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FIGURE 4. MSE versus SNR with M1 = 15, M2 = 14, M3 = 13
(1st dimension).

FIGURE 5. MSE versus SNR with M1 = 15, M2 = 14, M3 = 13
(2nd dimension).

FIGURE 6. MSE versus SNR with M1 = 15, M2 = 14, M3 = 13
(3rd dimension).

algorithm always attain the CRLB at certain SNRs for dif-
ferent data length, and the performance of the proposed algo-
rithm are similar with that in experiment 1.

In the third experiment, we investigate the performance
of the proposed method when the numbers of samples are
varying from 10 to 20, i.e.,M1 (M2 andM3) varies from 10 to
20. The SNR is fixed at SNR= 5 dB. For simplicity, we com-
pare the average MSE (AMSE) of the three dimension’s
frequencies. The other data settings are the same as that in
experiment 1. From Figure 7, it is seen that the AMSE of the

FIGURE 7. AMSE versus M1(M1 = M2 = M3).

FIGURE 8. Computation time versus M1(M1 = M2 = M3).

FIGURE 9. AMSE versus SNR with M1 = M2 = M3 = 15 for 2-tone case.

proposed algorithm always attain the CRLB and outperforms
all the other methods.

In the forth experiment, we plot the average computational
time of the proposed algorithm and the other methods versus
different M with M1 = M2 = M3 in Figure 8. M1 varies
from 10 to 20. We fix the SNR at 5 dB, the other data settings
remain the same as in the first test. We also included the
average computational time of Fast N-D ESPRIT method
in [18]. It is seen that even though the proposed approachs
cost more time than the correlation-based methods C-1 and
C-2, it is more computationally efficient than the IMDF, N-D
Sparse, and N-D ESPRIT methods, although the latter have
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better threshold behaviors as shown in previous simulation
results. These simulation results indicate that the proposed
method can achieve accurate estimate with less complexity
compared with IMDF, N-D Sparse, N-D ESPRIT, and Fast
N-D ESPRIT methods.

Although the purpose of this paper is to solve the problem
of multidimensional single-tone frequency estimation, it is
also possible to extend the proposed algorithm to multi-tone
case with the utilization of an existing frequency pairing
method. But due to that thematrix R of the QR decomposition
is an upper triangular matrix, the accuracy of the estimate
will be reduced with directly use of the proposed algorithm.
To investigate the performance of directly use of the proposed
algorithm, we compare the MSE of frequencies estimated
from a 3-D signal with 2-tone frequencies with CRLB. The
frequencies of the 3-D signal is [ω11 ω12] = [0.3π 0.5π ],
[ω21 ω22] = [0.05π 0.23π ], [ω31 ω32] = [0.4π 0.9π ],
and [γ1 γ2] = [1 2]. We compare the AMSE of the three
dimension’s frequencies for simplicity. The result is plotted
in Figure 9. It is seen that the performance of the proposed
method is reduced compared with that of the single-tone case,
the AMSE attains the CRLB when SNR is larger than 2 dB.

V. CONCLUSION
To estimate the frequency of multidimensional signals
embedded in additive white Gaussian noise, an accurate
approach based on QR decomposition is addressed. As we
only consider single-tone multidimensional signals, no pair-
ing procedure is needed. Both theoretical development and
simulation results show that the proposedmethod can provide
optimal estimation performance when the SNR is sufficiently
high compared with existing state-of-the-art algorithms.
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