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Efficient Low-Rank Matrix Factorization Based on
�1,ε-Norm for Online Background Subtraction

Qi Liu , Member, IEEE, and Xiaopeng Li

Abstract— Background subtraction refers to extracting the
foreground from an observed video, and is the fundamental
problem of various applications. There are two kinds of popular
methods to deal with background separation, namely, robust
principal component analysis (RPCA) and low-rank matrix
factorization (LRMF). Nevertheless, the drawback of RPCA
requires tuning penalty parameter to attain an ideal result.
Compared with RPCA, the �1-norm based LRMF does not
involve extra parameters tuning, but it is challenging to optimize
the �1-norm based minimization because of the nonsmooth
�1-norm. In addition, it becomes time-consuming to find the
optimal solution. In this work, we propose to employ smooth
�1,�-norm, an approximation of �1-norm, to tackle background
subtraction. Thus, the proposed model inherits the superiority
of LRMF and even becomes tractable. Then the resultant
optimization problem is solved by alternating minimization and
gradient descent where the step-size of the gradient descent is
adaptively updated via backtracking line searching approach.
The proposed method is proved to be locally convergent. Exper-
imental results on synthetic and real-world data demonstrate
that our method outperforms the state-of-the-art algorithms in
terms of reconstruction loss, computational speed and hardware
performance.

Index Terms— Background subtraction, online subspace
learning, low-rank matrix factorization.

I. INTRODUCTION

BACKGROUND subtraction aims to separate moving
objects from the background in the video streams (a.k.a.,

high-dimensional tensor) collected from real scenes, which
dwells in a diversified range of applications, including urban
traffic detection [1], long-term video monitoring [2], automatic
vascular enhancement [3] and social signal processing [4].

One popular and feasible method to tackle the background
separation task is batch robust principal component analysis
(RPCA) [5]–[8], that is, a variant of PCA [9]. The RPCA is
formulated as low-rank and �0-norm minimization problem.
Unfortunately, it is NP-hard as the rank and �0-norm functions
are nonconvex and discrete. In [10], [11], nuclear norm and
�1-norm replace them to deal with background separation
since nuclear norm and �1-norm are the convex envelops
of the rank function and �0-norm [12], [13], respectively.
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However, the nuclear norm is the sum of all singular values,
hence it may cause the solution to deviate seriously from the
ground truth. To handle this issue, [14] proposes a nonconvex
surrogate function to approximate the rank function, and
then combines the �1-norm to enhance the accuracy of the
background estimation. Recently, motivated by the plug-and-
play framework, panoramic RPCA (P-RPCA) [15] considers
the weighted anisotropic total variation (TV) to penalize
the sparse component and employs an improved low-rank
estimator “OptShrink” to deal with the resultant low-rank
minimization. On the other hand, mixture of Gaussian (MoG)
for low-rank matrix factorization (MoG-LRMF) [16] employs
LRMF to handle background subtraction and exploits a spe-
cific MoG distribution to model the foreground. Compared
with the RPCA based methods, MoG-LRMF does not require
the penalty parameters. Other variants of RPCA also include
[17], [18], details can refer to the review reference [19].

It is worth noting that the mentioned methods above belong
to offline strategy (viz., batch LRMF/RPCA), processing the
whole video to obtain the foreground. The video data, in prac-
tice, comprise a mass of frames, and thus the dimensions of
the constructed matrix are very huge. Hence, these approaches
may be infeasible due to the limited memory storage on mobile
and wearable devices. Besides, they may not meet the real-time
requirement for large scaled videos.

An online scheme is necessary to tackle background sub-
traction, which handles the incoming data of each frame
on-the-fly without storing the whole video in memory.
Some online methods are developed based on RPCA, e.g.,
OR-PCA [20], truncated nuclear norm based online RPCA
(TNN-ORPCA) [21], online nonconvex lp-norm based RPCA
(OLP-RPCA) [22], Grassmannian robust adaptive subspace
tracking algorithm (GRASTA) [23], transformed GRASTA
(T-GRASTA) [24], online RPCA via stochastic optimiza-
tion (RPCA-STOC) [25] and online moving window RPCA
(OMWRPCA) [26]. GRASTA and RPCA-STOC employ
Frobenius norm to minimize the loss function and thus
they are not robust to outliers. To be robust to outliers,
�1-norm, in T-GRASTA, is adopted to minimize the cost
function. Besides, RPCA-STOC utilizes stochastic optimiza-
tion to tackle the online background subtraction. In addition,
OMWRPCA uses a sliding window to detect the same part
between two frames, and then minimizes the loss function
in the window. The online version of MoG-LRMF, online
mixture of Gaussian matrix factorization (OMoGMF) [27],
utilizes LRMF to deal with online background subtraction
problem and achieves better performance.

In this work, we utilize �1,ε-norm and LRMF to formulate
the online background subtraction problem where the target
matrix is represented by the product of two low-dimensional
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matrices. The �1,ε-norm is the smooth approximation of
�1-norm, and thus the resulting model is tractable. Compared
with the existing methods, the proposed algorithm takes the
advantage of not requiring any penalty parameter tuning.
Alternating minimization (AM) and gradient descent [28], [29]
are employed to solve the resultant optimization problem.
Moreover, experimental results demonstrate that our method
is computationally attractive and hardware friendly.

The remainder of the letter is organized as follows.
In Section II, we review two online background subtraction
models. The proposed method is introduced in Section III.
In addition, its convergence and computational complex-
ity are analyzed. In Section IV, simulation and experimen-
tal results on synthetic and real-world data show that our
method outperforms state-of-the-art methods. Finally, con-
clusions are drawn in Section V. The code is shared at
https://sites.google.com/site/qiliucityu.

II. PROBLEM STATEMENT

A. Notations

Scalars, vectors and matrices are represented by italic, bold
lower-case and bold upper-case letters, respectively. For matri-
ces, ‖ · ‖∗, equalling to the sum of all singular values, denotes
nuclear norm. In addition, ‖MMM‖2F =

∑m
i=1

∑n
j=1 m2

i, j is
Frobenius norm where mi, j is the (i, j) entry of MMM . Besides,
the j th column and i th row of MMM are denoted by mmm j and mmmT

i ,
respectively. Moreover, ‖ · ‖1 is the �1-norm for vectors and
matrices, which is calculated using the sum of absolute value
of all entries.

B. Online RPCA Framework

Consider a video with n frames, each frame can be con-
verted into a vector with the size of m and thus the video
data can be modeled as a matrix MMM ∈ R

m×n . Inspired by that
background motion caused by orthographic cameras lies in a
low-rank subspace and pixels belonging to one trajectory tend
to group together, it is able to decompose the given video
trajectory matrix into low-rank (i.e., background) and sparse
(i.e., foreground) matrices.

It is well known that RPCA enables to separate an observed
matrix into a low-rank matrix and a sparse matrix [10], [11].
Thus, most of existing methods apply RPCA to solve BS,
leading to:

min
LLL,SSS
‖LLL‖∗ + λ1‖SSS‖1, s.t. LLL + SSS = MMM (1)

where LLL and SSS denote the low-rank and sparse matrices,
respectively, and λ1 > 0 is a penalty parameter to trade off the
rank of LLL and the sparsity of SSS. To tackle (1), RPCA-STOC
suggests employing the penalty method to convert (1) into the
following unconstrained problem [25]:

min
LLL,SSS
‖LLL‖∗ + λ1‖SSS‖1 + λ2

2
‖MMM − LLL − SSS‖2F (2)

where λ2 > 0 is a penalty parameter. Furthermore, it has been
proved that the nuclear norm is upper bounded by [30]:

||LLL||∗= inf
UUU ,VVV

{
1

2
‖UUU‖2F +

1

2
‖VVV ‖2F : LLL = UUUVVV

}
. (3)

Fig. 1. Illustration of �1-norm and �1,� -norm with � = 1× 10−2.

where UUU ∈ R
m×r and VVV ∈ R

r×n with r being the rank of the
target matrix. Thus, (2) is equivalent to:

min
UUU ,VVV ,SSS

1

2
(‖UUU‖2F + ‖VVV ‖2F )+λ1‖SSS‖1+ λ2

2
‖MMM −UUUVVV − SSS‖2F

(4)

where UUU can be considered as the basis for low-rank subspace
and VVV represents the coefficients of observations w.r.t. UUU .
To meet the online requirement, the online RPCA computes
the loss function on each frame, resulting in:

min
UUU ,vvv j ,sss j

1

2
(‖UUU‖2F + ‖vvv j‖22)+λ1‖sss j‖1+ λ2

2
‖mmm j−UUUvvv j − sss j‖2F

(5)

where vvv j , sss j and mmm j are the j th column of VVV , SSS and MMM ,
respectively. It is worth noting that the online RPCA based
performance is determined by these two penalty parameters,
namely λ1 and λ2. In practice, tuning these two parameters is
time-consuming and it is challenging to determine for different
observed videos.

C. Online LRMF Framework

MoG-LRMF proposes to formulate the background subtrac-
tion problem as:

min
UUU ,VVV
‖MMM −UUUVVV‖L p (6)

where ‖ · ‖L p denotes Frobenius norm or �1-norm. After
seeking UUU and VVV , the foreground is reconstructed via
SSS = MMM−UUUVVV . L p norm is convex, and thus it is easy to find UUU
and VVV . Nevertheless, note that SSS is not sparse when Frobenius
norm is utilized to minimize (6), which produces an unclear
foreground due to the noise corruptions. In contrast, �1-norm is
able to obtain a sparse SSS but is a nonsmooth function, leading
to intractable optimization. On the other hand, OMoGMF
improves (6) and proposes online LRMF as:

min
UUU ,vvv j
‖mmm j −UUUvvv j‖L p . (7)

Compared with the online RPCA, OMoGMF only requires
a prior rank information.

III. PROPOSED METHOD

To avoid the intractable optimization caused by �1-norm,
we suggest adopting �1,�-norm, defined as:

‖XXX‖11,� =
m∑

i=1

n∑
j=1

(
(x2

i, j + �2)1/2 − �
)

(8)
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where � > 0 enables �1,�-norm to be smooth. Compared with
�1-norm, the �1,�-norm has two crucial properties, as shown
in Fig. 1: (i) �1,�-norm with � > 0 is smooth and convex.
(ii) lim

�→0
�1,�-norm = �1-norm.

Based on the �1,�-norm, we formulate the background
subtraction problem as:

min
XXX
||XXX −MMM ||1,� + ‖XXX‖∗ (9)

According to (3), (9) is modeled as:
min
UUU ,VVV
||U VU VU V −MMM ||11,� +

1

2
||UUU ||2F +

1

2
||VVV ||2F . (10)

Based on the online strategy, (10) on the j th frame can be
rewritten as:

min
UUU ,vvv j

||UUUvvv j −mmm j ||11,� +
1

2
||UUU ||2F +

1

2
||vvv j ||22. (11)

Following the rationale of alternating minimization (AM),
we solve (11) via the following iterative procedure:

vvv t+1
j = arg min

vvv j
h(vvv j )

= arg min
vvv j
||UUUtvvv j −mmm j ||11,� +

1

2
||vvv j ||22. (12)

UUUt+1 = arg min
UUU

f (UUU)

= arg min
UUU
||UUUvvv t+1

j −mmm j ||11,� +
1

2
||UUU ||2F . (13)

Since both (12) and (13) are convex and smooth, gradient
descent is utilized to address them. Hence, the solution to vvv t+1

j
is computed by

vvvk+1
j = vvvk

j − ρ∇h(vvvk
j ) (14)

where ρ > 0 is the step size, and ∇h(vvv j ) = (UUUt )T ddd + vvv j .
Herein, the i th entry of ddd is di = ((uuut

i )
Tvvv j − (mmm j )i )

2 +
�2)−0.5((uuut

i )
T vvv j−(mmm j )i ) with uuuT

i and (mmm j )i being the i th row
of UUU T and i th entry of mmm j , respectively. When vvvk+1

j converges,

it becomes the solution to vvv t+1
j . Similarly, UUUt+1 is calculated

by

UUUk+1 = UUUk − ρ∇ f (UUUk) (15)

where ∇ f (UUU) = ggg(vvv t+1
j )T + UUU with gi = (uuuT

i vvv t+1
j −

(mmm j )i )
2 + �2)−0.5(uuuT

i vvv t+1
j − (mmm j )i ). When UUUk+1 converges,

UUUt+1 is founded, that is, UUU t+1 = UUUk+1. The background of
the j th frame is lll j = UUUt+1vvv t+1

j and thus the foreground
of the j th frame is sss j = mmm j − lll j . The proposed method
is termed as online background subtraction using �1,�-AM
(OBSL1), summarized in Algorithm 1, where the � is set
at 0.01.

For ρ, we adopt backtracking line searching approach
[28], [31] to adaptively update it. Consider a general convex
function g(xxx), in the (k + 1)th iteration, the process to
determine ρ is based on:

g(xxxk − ρ∇g(xxxk)) > g(xxxk)− ρ

2
‖∇g(xxxk)‖2F , (16)

which requires ρ ← βρ. That is, ρ is determined as the value
with g(xxxk−ρ∇g(xxxk)) ≤ g(xxxk)− ρ

2 ‖∇g(xxxk)‖2F . It is suggested
that ρ starts with 1, and β = 0.8 [28]. Moreover, the stopping
criteria for both t− and k− loops are ‖vvvk+1 − vvvk‖22/‖vvvk‖22 ≤
10−5 and ‖UUU k+1 −UUUk‖2F/‖UUU k‖2F ≤ 10−5, respectively.

Algorithm 1 OBSL1 for Background Subtraction

Input: Video matrix MMM ∈ R
m×n and rank r

Initialize: Randomize UUU1 ∈ R
m×r

for j = 1 : n do
for t = 1, 2, · · · do

for k = 1, 2, · · · do
(1) vvvk+1

j = vvvk
j − ρ∇h(vvvk

j )
Stop if stopping criterion is met.

end for
(2) vvv t+1

j = vvvk+1
j

for k = 1, 2, · · · do
(3) UUUk+1 = UUUk − ρ∇ f (UUUk)
Stop if stopping criterion is met.

end for
(4) UUUt+1 = UUUk+1

Stop if stopping criterion is met.
end for
(5) lll j = UUUt+1vvv t+1

j
end for

Output: LLL = [lll1, · · · , llln] and SSS = MMM − LLL

For OBSL1, the complexities for calculating ggg and ddd are
O(mr). To calculate ∇ f (UUUk) and ∇h(vvvk

j ), the complexity
is dominated by O(mr2). Furthermore, the complexities for
updating UUUk+1 and vvvk+1

j are O(Bmr2) and thus the total
computational complexity of OBSL1 is O(T K Bmnr2) where
T , K and B are the maximum iteration of the AM, gradient
descent and backtacking line searching, respectively. In our
experiments, T , K and B are set to 2, 1000 and 10, respec-
tively. Note that O(T K Bmnr2) is to perform the whole video
while the complexity of each frame is O(T K Bmr2).

To facilitate analyzing the convergence of OBSL1, we first
define a loss function as:

L(UUU ,vvv j ) = ||UUUvvv j −mmm j ||11,� +
1

2
||UUU ||2F +

1

2
||vvv j ||22, (17)

then prove that L(UUU ,vvv j ) is nonincreasing. We have:
L(UUUt+1,vvv t+1

j )− L(UUUt ,vvv t
j )

= L(UUU t ,vvv t+1
j )−L(UUUt ,vvv t

j )+L(UUUt+1,vvv t+1
j )− L(UUU t ,vvv t+1

j ).

(18)

Since vvvk+1
j is the optimal solution of minvvv j h(vvv j ), we obtain

L(UUUt ,vvv t+1
j ) − L(UUUt ,vvv t

j ) ≤ 0. Besides, L(UUUt+1,vvv t+1
j ) −

L(UUUt ,vvv t+1
j ) ≤ 0 must hold as UUUt+1 is the global solu-

tion of minUUU f (UUU) because of the convexity. Thus, we get
L(UUUt+1,vvv t+1

j ) − L(UUUt ,vvv t
j ) ≤ 0, implying that L(UUU ,vvv j ) is

nonincreasing. Moreover, L(UUU ,vvv j ) is lower bounded by 0.
Given that minimizing L(UUU ,vvv j ) is a nonconvex (viz.,
bi-convex) problem, OBSL1 is thus locally convergent.

IV. EXPERIMENTAL RESULTS

This section describes experiments that are conducted on
both synthetic, CDnet 2014 [32], and BMC 2012 [33] bench-
mark databases to validate the effectiveness and efficiency of
the proposed method.

A. Synthetic Data

Following the scheme from [26] and [34], the simulated
video data is modeled. For each frame, the background
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TABLE I

COMPARISON OF THE PROPOSED METHOD WITH THE EXISTING ONLINE
AND OFFLINE REPRESENTATIVES IN TERMS OF MSE VALUES

TABLE II

CPU RUNTIME COMPARISON AMONG DIFFERENT METHODS

AAA ∈ R
200×200 is generated by a random matrix whose

entries satisfy the standard Gaussian distribution and then
its i th singular value is set to 210−i . This distribution of
the singular values performs good approximation of image
background. In addition, the moving object is represented by
a random matrix BBB ∈ R

50×25. The mimetic video includes
100 frames and the moving object is randomly embedded into
each background. Based on the aforementioned setting, we can
acquire MMM ∈ R

40000×100 and SSS ∈ R
40000×100, which contain

the backgrounds and foregrounds of all frames, respectively.
Herein, mean squared error (MSE) is utilized as the evaluation
metric, namely:

MSE = ‖SSS − Ŝ̂ŜS‖2F/(mn) (19)

where Ŝ̂ŜS denotes the estimate of SSS.
The proposed algorithm is compared with four existing

online and offine representatives, viz., OMWRPCA [26],
OMoGMF [27], T-GRASTA [24] and P-PRCA [15], as tab-
ulated in Table I. It is seen that our method outperforms
OMWRPCA, OMoGMF and T-GRASTA with smaller per-
formance loss, and yet slightly is inferior to P-RPCA. It is
worth noting that, however, P-RPCA is an offline background
subtraction method.

B. Real-World Data

We evaluate the CPU runtime among compared algorithms,
as listed in Table II. We observe that the elapsed time of the
proposed method is much less than those of OMWRPCA,
T-GRASTA and P-PRCA, and OMoGMF performs the best
in computational time, which is partially attributed to the pro-
posed online MoG modeling. Additionally, the reconstruction
performance on CDnet 2014 and BMC 2012 are illustrated
in Fig. 2 and Fig. 3, respectively. we can see that the rebuilt
backgrounds and foregrounds by the proposed algorithm on
different videos are more visually clear than OMWRPCA,
OMoGMF and T-GRASTA, and comparable with P-RPCA.
Nevertheless, the offline P-RPCA requires full video data to
achieve satisfactory result. On the other hand, although the
proposed method runs slower than OMoGMF, the reconstruc-
tion performance of our scheme is much better than that of
OMoGMF.

Fig. 2. Comparison results on CDnet 2014 dataset among different back-
ground subtraction competitors.

Fig. 3. Comparison results on BMC 2012 dataset among different background
subtraction competitors.

As tabulated in Table III, we evaluate the workloads of
different approaches in terms of floating point operations per
second (Flops) on a Linux system, where the Flops is a
measure of hardware performance used for comparing the peak
theoretical performance of a system. Herein, we calculate the
Flops via Perf,1 which is an event-oriented observability tool
for Linux 2.6+ based systems that abstracts away graphics

1http://www.brendangregg.com/perf.html
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TABLE III

COMPUTER PERFORMANCE EVALUATION AMONG
DIFFERENT APPROACHES IN TERMS OF FLOPS

processing unit (GPU) hardware differences in Linux perfor-
mance measurements. From Table III, we observe that the
number of the proposed method is around 4.32 million (viz.,
4.32M), which is more efficient than other competitors, and
yet slightly inferior to OMoGMF.

V. CONCLUSION

In this work, on the basis of proposed �1,�-norm min-
imization, a novel online background subtraction method,
named as OBSL1, is developed. Compared with the state-
of-the-art algorithms, the proposed method does not require
any penalty parameters tuning and enjoys simple implementa-
tion. Meanwhile, the proposed method shows its effectiveness
and efficiency on synthetic and real-world data in terms of
MSE metric, CPU runtime and hardware Flops computation,
as corroborated by indicative empirical results.
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