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a b s t r a c t 

In this paper, we address the problem of direction-of-arrival (DOA) estimation using sparse represen- 

tation. As the performance of on-grid DOA estimation methods will degrade when the unknown DOAs 

are not on the angular grids, we consider the off-grid model via Taylor series expansion, but dictionary 

mismatch is introduced. The resulting problem is nonconvex with respect to the sparse signal and per- 

turbation matrix. We develop a novel objective function regularized by the nonconvex sparsity-inducing 

penalty for off-grid DOA estimation, which is jointly convex with respect to the sparse signal and pertur- 

bation matrix. Then alternating minimization is applied to tackle this joint sparse representation of the 

signal recovery and perturbation matrix. Numerical examples are conducted to verify the effectiveness of 

the proposed method, which achieves more accurate DOA estimation performance and faster implemen- 

tation than the conventional sparsity-aware and state-of-the-art off-grid schemes. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Direction-of-arrival (DOA) estimation has been extensively stud-

ed over the past few decades because of its fundamental role

n many signal processing areas ranging from multiple-input

ultiple-output radar, mobile and wireless communications, chan-

el estimation and sonar to acoustic tracking [1–3] . 

Recently, sparse representation has attracted increasing inter-

st in statistical signal analysis and parameter estimation. In [4] ,

he concept of sparse representation is extended to address the

roblem of DOA estimation problem and � 1 -SVD algorithm is pro-

osed to reduce the dimension of observations via singular value

ecomposition (SVD), which can achieve super-resolution perfor-

ance. A reweighted � 1 norm penalty algorithm [5] exploits the

oefficients of the reduced dimension Capon spatial spectrum in

onstructing the weight matrix to enforce the sparsity of solution,

hich involves a high computational burden. The methods men-

ioned above have shown improvements in DOA estimation, but

ost of them are based on on-grid DOA � 1 norm constrained min-

mization. Since in practice the unknown DOAs are not always ex-
∗ Corresponding author. 
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ctly on the sampling grids, their DOA estimation performance will

egrade due to errors caused by the mismatches. 

To circumvent this issue, off-grid DOA estimation methods have

een developed [6–12] . In [6] , a gridless sparse approach via

eweighted atomic norm minimization is proposed for off-grid

OA estimation. In [7,8] , alternating minimization is exploited to

olve for sparse signal and dictionary mismatch simultaneously,

ut it suffers from slow convergence. A noise subspace fitting-

ased off-grid DOA estimation method is derived in [9] using

econd-order Taylor approximation to achieve higher modeling ac-

uracy. In [10] , an analytical performance bound on joint sparse

ecovery is given and a fast iterative shrinkage-threshold algorithm

s implemented to tackle joint sparse recovery with structured dic-

ionary mismatches. In [11] , co-prime arrays are considered to in-

rease degrees of freedom for the grid mismatch and sample co-

ariance matrix is utilized to reduce the effect of noise variance.

n [12] , a computationally efficient root sparse Bayesian learning

RSBL) method is proposed to eliminate the modeling error when

sing coarse grid. 

Compared with the convex function regularized by least squares

roblem, it has been demonstrated that utilizing nonconvex

unctions, such as smoothed � 0 quasi-norm [13] , � p quasi-norm

14] and weak convexity [15] , can achieve better sparse signal

ecovery. In this paper, we develop a novel objective function

egularized by the nonconvex sparsity-inducing penalty for off-

rid DOA estimation. Our motivation is twofold: (i) to overcome

http://dx.doi.org/10.1016/j.sigpro.2017.05.020
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the limitation of the conventional sparsity-based DOA estimation

methods that the unknown angles belong to predefined discrete

angular grids; and (ii) a proper nonconvex regularization is able to

achieve better performance compared with convex relaxation em-

ploying the � 1 norm function. In this study, we first introduce the

off-grid model into DOA estimation via first-order Taylor series ex-

pansion, which is equivalent to the dictionary mismatch, and then

devise an objective function regularized by the nonconvex sparsity-

inducing penalty with the least absolute shrinkage and selection

operator (LASSO) [16] . The resulting objective function is jointly

convex with respect to the sparse signal and perturbation ma-

trix. We follow the rationale of alternating minimization to obtain

the sparse signal by alternating direction method of multipliers

(ADMM) [17] with incorporating the proximity operator for a fixed

perturbation matrix, then update perturbation matrix via fixing the

sparse signal and so on. Our results demonstrate that the proposed

method outperforms the conventional sparsity-aware and state-of-

the-art off-grid schemes. 

The rest of this paper is organized as follows. In Section 2 , the

problem of DOA estimation using sparse representation is formu-

lated. Section 3 introduces the off-grid model and presents our

DOA estimation method. In Section 4 , numerical examples are con-

ducted to evaluate the performance of the proposed algorithm.

Section 5 concludes this paper. 

Notation : Lowercase bold-face and uppercase bold-face letters

represent vectors and matrices, respectively. ( ·) † , ( ·) T and ( ·) H are

pseudo-inverse, transpose and conjugate transpose operators, re-

spectively. vec( ·) denotes the vectorization operator which stacks

a matrix column by column. diag( ·) is a diagonal matrix composed

of the elements of a column vector. � denotes the Kronecker prod-

uct operator. || ·|| 1 , || ·|| 2 and || ·|| F denote the � 1 norm, � 2 norm and

Frobenious norm, respectively. � and � take the real and imagi-

nary parts of a complex variable, respectively. I K denotes the K ×
K identity matrix. 

2. Problem statement 

2.1. Signal model 

Consider a uniform linear array (ULA) equipped with M sensors.

The inter-element spacing is half-wavelength. The origin is set at

the middle point of the ULA. Assume that K narrowband signals

from the far-field impinge onto the ULA from unknown and dis-

tinct angles of θ1 , . . . , θK . The ULA response at the k th target can

be expressed as 

a (θk ) = [ e − jπ (M−1) 
2 cos (θk ) , . . . , e jπ

(M−1) 
2 cos (θk ) ] T (1)

The M × 1 observation vector is: 

y t = A (θ ) s t + n t , t = 1 , . . . , T (2)

where y t = [ y 1 (t) , ..., y M 

(t)] T , A (θ ) = [ a (θ1 ) , . . . , a (θK )] is the ar-

ray steering matrix, s t = [ s 1 (t) , . . . , s K (t)] T contains the source sig-

nal amplitudes, n t = [ n 1 (t) , . . . , n M 

(t)] T is the complex indepen-

dent white Gaussian noise vector with zero mean and covariance

σ 2 I M 

. Here, T is the number of snapshots, and y m 

( t ) and n m 

( t ),

m = 1 , . . . , M, are the output and measurement noise of the m th

sensor at time t , respectively. 

Collecting the T snapshots, the matrix form of (2) can be for-

mulated as a multiple measurement vectors (MMV) model, given

by 

Y = A (θ ) S + N (3)

where Y = [ y 1 , . . . , y T ] ∈ C 

M×T , S = [ s 1 , . . . , s T ] ∈ C 

K×T and N =
[ n 1 , . . . , n T ] ∈ C 

M×T . 

In our study, we assume that K is known a priori and employ

the M × K measurement matrix Y sv by thresholding the K largest
ingular values of the M × T measurement matrix Y to reduce

omputational complexity in directly processing (3) , which is anal-

gous to the � 1 -SVD algorithm [4] . In summary, the problem of

OA estimation in sparse representation framework is to find the

nknown DOAs given K , Y sv and the mapping θ → A ( θ). 

.2. DOA estimation in sparse representation framework 

Let the set � = { ̂  θ1 , . . . , 
ˆ θN } be the discretized sampling grids of

ll potential directions in the admissible DOA range [0, π ], where

 is the number of grid points and typically N � M > K . When

he true DOAs are located at (or close to) the sampling grids, the

ypical DOA estimation model based on the sparse representation

ramework is linear: 

 sv = A ( ̂  θ ) ̂ S + 

ˆ N (4)

here ˆ S ∈ C 

N×K is the sparse signal matrix and A ( ̂  θ ) =
 a ( ̂  θ1 ) , . . . , a ( ̂  θN )] ∈ C 

M×N . The K rows in 

ˆ S with largest mag-

itudes are identical to those of S , and the remaining N − K rows

n 

ˆ S are regarded as zero. In compressed sensing theory, the main

ask in (4) is to recover ˆ S from the underdetermined system, and

OA estimation is equivalent to finding the positions of K nonzero

ows in 

ˆ S . The sparse signal recovery can be formulated as the � 0 
orm constrained minimization problem: 

(� 0 ) : min 

ˆ S 

‖ ̂

 S ‖ row, 0 s.t. Y sv = A ( ̂  θ ) ̂ S + 

ˆ N (5)

here || ·|| row, 0 counts the nonzero rows. 

Since � 0 norm function is highly discontinuous and nonconvex,

olving the � 0 norm constrained minimization problem is known to

e NP-hard in general. To address this issue, the � 1 norm, which is

he closest convex norm to the � 0 norm, is employed instead. Then

he sparse signal recovery problem under the � 1 norm function is:

(� 1 ) : min 

ˆ S 

‖ ̂  s � 2 ‖ 1 s.t. ‖ Y sv − A ( ̂  θ ) ̂ S ‖ 

2 
F ≤ η (6)

here η is an upper-bound on the noise power, and ˆ s � 2 is a func-

ion of ˆ S whose the i th element equals the Frobenius norm of the

 th row of ˆ S , i.e., [ ̂ s � 2 ] i = ‖ ̂  S (i, :) ‖ 2 . Numerical methods [4,18] have

een presented for (6) . However, larger coefficients are penalized

ore heavily in � 1 norm than smaller coefficients, which results to

hat the sparsest solution of � 1 norm penalty does not approximate

he � 0 norm penalty. Nevertheless, reweighted � 1 norm minimiza-

ion algorithms are designed to tackle this imbalance in (6) : 

( W � 1 ) : min 

ˆ S 

‖ W ( ̂ s ) � 2 ‖ 1 s.t. ‖ Y sv − A ( ̂  θ ) ̂ S ‖ 

2 
F ≤ η (7)

here W is a weighting matrix and has different forms according

o different optimization criteria [19,20] . 

To this end, there are two main drawbacks of the DOA esti-

ation methods based on � 1 norm minimization: (i) they recover

he DOAs only if the targets exactly correspond to the discretized

ampling grids. However, the target positions are not precisely on

he grids in practical scenarios and thus DOA estimation bias ex-

sts. Moreover, most conventional sparsity-based DOA estimation

ethods tackle this problem by using dense sampling grids, which

ead to high computational complexity and the estimated DOAs

re still constrained on the grids; (ii) they apply toolbox to calcu-

ate the � 1 norm constrained minimization problem, such as CVX

21] and Sedumi [22] , which cannot tackle the nonconvex opti-

ization problem and is time-consuming, especially for large data

ize. 
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A

. Algorithm development 

.1. Off-grid model 

In real scenario, no matter how fine the grid points are, DOAs

re almost not located exactly on the discretized sampling grids,

hich is regarded as the off-grid problem. To address this, off-

rid DOA model has been suggested and there are two main ideas.

he first applies atomic norm directly on the continuous parameter

pace for gridless DOA estimation [6,23] , while the second mod-

ls the off-grid DOA via Taylor series expansion and then handles

he resulting dictionary mismatch [7,10–12] . Note that our devel-

pment is based on the latter. Here, DOA is decomposed into two

arts, namely an integer part of DOA on the grid and a fraction

art to complement the on-grid model. Suppose θk / ∈ { ̂  θ1 , . . . , 
ˆ θN }

or some k ∈ { 1 , . . . , K} . In such a case, DOA θ k can be rewritten

s θk = 

ˆ θk + δk , where ˆ θk denotes the nearest grid to θ k and δk is

he grid offset. 

According to the trigonometric identities, the term cos ( ̂  θk + δk )

s approximated as 

os ( ̂  θk + δk ) = cos ( ̂  θk ) cos (δk ) − sin ( ̂  θk ) sin (δk ) 

≈ cos ( ̂  θk ) − δk sin ( ̂  θk ) (8) 

By utilizing first-order Taylor series expansion, the steering vec-

or for the off-grid DOA model is given by 

 (θk ) ≈ a ( ̂  θk ) + b ( ̂  θk )(θk − ˆ θk ) (9)

here b ( ̂  θk ) is the first derivative of a ( ̂  θk ) with respect to ˆ θk . Then

he dictionary matrix based on the off-grid DOA model can be cor-

ected as 

 (θ ) ≈ A ( ̂  θ ) + B ( ̂  θ ) � (10)

here � = diag (δ) with δ = [ δ1 , . . . , δN ] 
T denotes the perturbation

atrix. 

As a result, the off-grid DOA estimation based on sparse repre-

entation framework is formulated as: 

 sv = [ A ( ̂  θ ) + B ( ̂  θ ) �] ̂ S + 

ˆ N (11)

It is well known that a sparse solution can be obtained by solv-

ng a least squares problem with � 1 norm regularization, which is

nown as the LASSO: min 

ˆ S 
‖ Y sv − [ A ( ̂  θ ) + B ( ̂  θ ) �] ̂ S ‖ 2 

F 
+ τ ‖ ̂  S � 2 ‖ 1 ,

here τ > 0 is the trade-off parameter. However, the resulting

roblem is difficult to solve due to the fact that it is nonconvex

ith respect to ˆ S and �. Therefore, it cannot be directly handled

y convex optimization toolboox. Most recently published works

12,24,25] tackle it from a sparse Bayesian inference perspective

here the Laplace prior is exploited for the signal of interest,

hich involve high computational complexity. 

.2. Off-grid DOA estimation with nonconvex regularization 

To overcome the limitation of the conventional sparsity-based

OA estimation methods, off-grid DOA model is considered, but it

s a challenging task because of the presence of the mismatches.

e introduce the sparse regularized least squares (SRLS) with � 2 
orm to mitigate the mismatches. As a result, sparse signal is ob-

ained by combining the LASSO with the SRLS: 

in 

ˆ S , �
τ ‖ ̂  s � 2 ‖ 1 + ‖ � ‖ 

2 
F + ‖ Y sv − [ A ( ̂  θ ) + B ( ̂  θ ) �] ̂ S ‖ 

2 
F (12)

It has been demonstrated in [15,26] that the sparsity pattern

an be better induced over the � 1 penalty conunterpart, with a

roper nonconvex penalty. As far as we know, the SRLS approach

as not yet been studied in combination with nonconvex penalty

or an underdetermined system. Via adding a nonconvex function
 ( ·), we devise an objective function regularized by the nonconvex

parsity-inducing penalty for off-grid DOA estimation: 

in 

ˆ S , �
λJ ( ̂ s g )+ ‖ � ‖ 

2 
F + ‖ Y sv − [ A ( ̂  θ ) + B ( ̂  θ ) �] ̂ S ‖ 

2 
F (13)

n which ˆ s g = ̂  s � 2 and λ > 0 is the regularization parameter while

he sparsity-inducing penalty is defined as 

( ̂ s g ) = 

N ∑ 

i =1 

F ( ̂  s g i ) (14)

here F : C → C 

+ is a weakly convex sparseness function satisfies:

efinition 1. 

a) F (0) = 0 , F (·) is even and not identically zero; 

b) F ( ·) is nondecreasing on [0 , + ∞ ) ; 

c) The function ˆ s g → F ( ̂ s g ) / ̂ s g is nonincreasing on [0 , + ∞ ) ; 

d) F ( ·) is weakly convex on [0 , + ∞ ) ; 

The concept of weak convexity is proposed in [27] . Basically,

 ( ̂ s g ) is weakly convex if and only if there exists a convex func-

ion H( ̂ s g ) = F ( ̂ s g ) − ξ ˆ s 2 g when ξ < 0. From Lemma 1.1 in [26] ,

 ( ̂ s g ) / ̂ s g → α as ˆ s g → 0 + for α > 0. Hence, the nonconvexity of F ( ·)
nd J ( ·) can be defined as β � −ξ/α according to Definition 1 and

14) . 

Functions satisfying Definition 1 can be found in Table 1 of [26] .

or example, the weakly convex sparseness function in (14) may be

hosen as 

 ( ̂  s g ) = (| ˆ s g | −β ˆ s 2 g ) 1 | ̂ s g |≤ 1 
2 β

( ̂  s g ) + 

1 

4 β
1 | ̂ s g | > 1 

2 β
( ̂  s g ) (15)

here 1 P ( ·) is the indicator function with value 1 when the ar-

ument satisfying P , and 0 otherwise. F ( ·) in (15) is a continuous

iecewise quadratic function. 

Now, the task is to estimate ˆ θ and δ in each iteration. To solve

he nonconvex optimization problem in (13) , we apply alternating

ptimization via minimizing with respect to one variable at each

ime. To be specific, we first update ˆ S by keeping the unknown

ariable � fixed, and then we do the same for �. 

By fixing �, the joint sparse representation problem in (13) re-

uces to the MMV sparse recovery problem: 

in 

ˆ S 

λJ ( ̂ s g )+ ‖ Y sv − [ A ( ̂  θ ) + B ( ̂  θ ) �] ̂ S ‖ 

2 
F (16)

hich can be solved using convex optimization toolbox, such as

eDuMi and CVX. Nevertheless, it is time consuming especially

hen the numbers of sensors and targets are large. For a more

fficient implementation, we apply variable splitting and introduce

he auxiliary variable z . Then we reformulate (16) as: 

in 

z 
λJ (z )+ ‖ 

˜ y − ˜ A ̃

 s ‖ 

2 
2 s.t. z = ̃  s (17)

here ˜ y = vec (Y s v ) = [ y T 
s v 1 , y 

T 
s v 2 , . . . , y 

T 
s v K ] 

T , ˜ s = vec ( ̂ S ) = [ ̂ s T 
1 
, ̂  s T 

2 
, . . . ,

  

T 
K 

] T , ˆ s g = 

√ ∑ K 
k =1 ( ̂ s (k )) 2 and 

˜ A = I K � [ A ( ̂  θ ) + B ( ̂  θ ) �] . 

ADMM blends the decomposability of dual ascent with the su-

erior convergence property of the multiplier method. We exploit

his property with incorporating the proximity operator of weakly

unction into the framework of augmented Lagrangian to solve

17) such that each iterative step corresponds to a convex opti-

ization. 

The augmented Lagrangian is: 

 ( ̃ s , z , μ) = λJ (z )+ ‖ 

˜ y − ˜ A ̃

 s ‖ 

2 
2 + μT ( z − ˜ s ) + 

γ

2 

‖ z − ˜ s ‖ 

2 
2 (18)

here γ > 0 is a penalty parameter which controls the conver-

ence rate of the algorithm. 

Based on the decomposition-coordination procedure of the

DMM, we determine { ̃ s , z , μ} from (18) via the following steps: 
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Table 1 

Runtime comparison. 

Algorithm/Time(s)/Snapshot T = 50 T = 200 

SNR = 10 dB SNR = -10 dB SNR = 10 dB SNR = -10 dB 

Proposed 0.1569 0.1608 0.1629 0.1670 

RSBL-SVD 0.2567 0.2640 0.2515 0.2421 

OGSBI-SVD 0.2667 0.2688 0.2744 0.2782 

� 1 -SVD 0.5594 0.5705 0.5507 0.5869 

W � 1 -SVD 1.8290 1.9113 2.0023 2.1072 
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1) With the obtained { ̃ s t , μt } at the t th iteration, the update of

z t+1 at the (t + 1) th iteration is 

z t+1 = arg min 

z 
L ( ̃ s t , z , μt ) 

= prox λ
γ J (·) 

(
˜ s t + 

μt 

γ

)
(19)

where prox λ
γ J (·) ( v ) denotes the proximal operator [28] of J ( ·).

When β < 1/(2 ζ ), 

prox ζ F ( v ) = 

v − ζ sign ( v ) 

1 − 2 ζβ
1 ζ≤| v |≤ 1 

2 β
( v ) + v 1 | v | > 1 

2 β
( v ) (20)

2) The update of ˜ s is 

˜ s t+1 = arg min 

˜ s 
L ( ̃ s , z t , μt ) 

= �C 

(
z − μt 

γ

)
(21)

where �C (·) is the Euclidean projection onto C = { ̃ s : ‖ ̃  y −
˜ A ̃ s ‖ 2 2 ≤ η} . That is, 

�C ( ̃ s ) = 

⎧ ⎨ 

⎩ 

˜ s , ˜ s ∈ C 
η

‖ ̃  s ‖ 

2 
2 

· ˜ s , otherwise . 
(22)

In computing (21) , Cholesky decomposition can be utilized to

improve the computational speed. 

3) The update of μ is 

μt+1 = μt − γ
(
z t − ˜ y + 

˜ A ̃ s t 
)

(23)

When the variable ˆ S has been updated, we minimize over �
while keeping the current estimate of ˆ S fixed. Then, the problem

of off-grid DOA estimation in (13) reduces to: 

�t+1 = arg min 

�
‖ �‖ 

2 
F + 

∥∥∥Y sv −
[ 

A 

(
ˆ θ
)

+ B 

(
ˆ θ
)
�

] ̂ S 

∥∥∥2 

F 

= arg min 

�
‖ �‖ 

2 
F + 

∥∥̃
 y − ˜ A ̃

 s 
∥∥2 

2 

(24)

Since the quadratic problem in (24) is convex with respect to

�, it is formulated as a SRLS problem equivalently. The optimal

solution to the quadratic problem (24) has a closed-form of: 

�t+1 = 

˜ B 

† [ ̃ y − (I K � A ( ̂  θ )) ̃ s t ] (25)

where ˜ B = [ B ( ̂  θ ) diag ( ̂ s t 
1 
) , B ( ̂  θ ) diag ( ̂ s t 

2 
) , . . . , B ( ̂  θ ) diag ( ̂ s t 

K 
) ] T . 

This completes one update cycle and the algorithm will ter-

minate once the difference between two consecutive iterations is

smaller than a given threshold or if the maximum iteration num-

ber is reached. 

As for the convergence of the problem in (13) , the following

result is established. 

Theorem 1. For arbitrary starting point, the sequence { ( ̂ S t , �t ) } gen-

erated by our algorithm converges at least to a stationary point of

(13) . 

Proof. In fact, the proposed method utilizing the rationale of alter-

nating optimization suggests that it is the special case of the block
oordinate descent algorithm: { ( ̂ S t , �t ) } = arg min {‖ Y sv − [ A ( ̂  θ ) +
 ( ̂  θ ) �] ̂ S ‖ 2 F + ‖ � ‖ 2 

F 
+ λJ ( ̂ s g ) } . The first two terms of the objective

unction are differentiable with respect to the corresponding vari-

bles, while the remaining term (i.e., the sparsity-inducing penalty)

s separable in the entries of ˆ s g . F ( ̂ s g ) is continuous and there

xists α > 0 such that F ( ̂ s g ) ≤ α| ̂ s g | holds for all ˆ s g ∈ R , which

s demonstrated in Section VI-A of [26] . Therefore, the cost func-

ion in (13) satisfies those technical assumptions (B1)-(B3) and

C2) in [29] . Moreover, the first term ‖ Y sv − [ A ( ̂  θ ) + B ( ̂  θ ) �] ̂ S ‖ 2 F is

ateaux-differentiable over its open domain. According to Lemma

.1 in [29] , the cost function in (13) is regular at each coordinate-

ise minimum point. Assuming that the sequence { ( ̂ S t , �t ) } uti-

izing the essential cyclic is defined, each coordinatewise minimum

oint becomes a stationary point according to Proposition 5.1 and

heorem 5.1 in [29] . �

. Numerical examples 

In this section, we present numerical examples for DOA esti-

ation to show the advantages of the proposed method, and to

ompare it with the conventional on-grid model-based algorithms,

ncluding � 1 -SVD [4] and W � 1 -SVD [20] and the off-grid sparse

ayesian inference (OGSBI) algorithm [25] and RSBL [12] . All al-

orithms process Y SV to obtain the DOA estimates. For [4] , Se-

uMi is used to solve the � 1 norm problem, and the reweighted

 1 norm problem in [20] is tackled by CVX. In all simulation ex-

mples, the noise is additive Gaussian white process and a ULA of

 = 10 sensors is considered. The direction grid is uniformly di-

ided with resolution of 2 ° sampling from 0 ° to 180 °, and T = 200

napshots are collected. Assume that two narrowband far-field sig-

als from [66.3 °, 80.6 °] impinge onto ULA. All results are based on

00 Monte Carlo runs. Our simulations are performed using MAT-

AB R2015b on a system with 3.40 GHz intel core i7 CPU and 4 GB

AM, under a 64-bit Windows 7 operating system. 

In the first test, we investigate the root mean square error

RMSE) of the proposed method, � 1 -SVD, W � 1 -SVD, OGSBI and

SBL versus signal-to-noise ratio (SNR). It can be seen from Fig. 1

hat the DOA estimation performance of the proposed method is

uperior to that of � 1 -SVD, W � 1 -SVD, OGSBI and RSBL especially

or a higher SNR. We also notice that the on-grid algorithms, i.e.,

 1 -SVD and W � 1 -SVD cannot provide reliable DOA estimation when

NR is above 5 dB. 

In the second test, RMSE versus snapshot number with differ-

nt methods is studied, where SNR is fixed at 0 dB, and the snap-

hot number is varied from 100 to 600. From Fig. 2 , it is observed

hat the proposed method has better angle estimation performance

han other algorithms for all T . The DOA estimation performance of

he proposed method gradually improves with the snapshot num-

er. 

In the third test, the resolution probability of different algo-

ithms versus SNR is examined and the results are plotted in Fig. 3 .

he resolution probability is computed as the ratio between the

umber of successful runs and the total number of the indepen-

ent runs. A trial is regarded as a successful one when the abso-

ute deviation between the estimated and true DOA is less than 1 °.
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Fig. 1. RMSE versus SNR. 

Fig. 2. RMSE versus snapshot number. 

Fig. 3. Resolution probability versus SNR. 

I  

p  

m

 

i  

s  

i  

a

 

a  

Fig. 4. Convergence curves of different off-grid algorithms. 

T  

c  

R

5

 

t  

r  

p  

a  

t  

b  

m  

s  

m  

t  

o  

u

A

 

R  

d  

(

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t is concluded that all methods exhibit a 100% correct resolution

robability at the high SNR region. We also see that the proposed

ethod has the highest resolution probability at SNR ≥ −6 dB. 

In the fourth test, the RMSE versus number of iterations is stud-

ed for the proposed method and off-grid algorithms, and the re-

ults are shown in Fig. 4 . It can be seen that the proposed method

s superior to the OGSBI and RSBL in terms of convergence speed

nd RMSE. 

In the fifth test, we compare the CPU runtimes of different

lgorithms. The results averaged over 100 trials are tabulated in
able 1 . It is observed that the proposed algorithm enjoys more

omputational attractiveness than � 1 -SVD, W � 1 -SVD, OGSBI and

SBL. 

. Conclusion 

In this paper, we have addressed the problem of DOA estima-

ion in sparse representation framework. A novel objective function

egularized by the nonconvex sparsity-inducing penalty has been

roposed for off-grid DOA estimation. We follow the rationale of

lternating minimization to minimize the resulting objective func-

ion, i.e., we first update the sparse signal via ADMM as the solver

y fixing perturbation matrix, and then calculate the perturbation

atrix by SRLS when the sparse signal is fixed. Simulation results

how that the proposed method provides more accurate DOA esti-

ation and faster implementation compared with several conven-

ional algorithms. Although not shown here, it is worth pointing

ut that the proposed method can also work for arrays with irreg-

lar sensor spacings. 
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