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Abstract: In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a
noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed
method, the reduced-dimensional transformation technique is adopted to eliminate the redundant
elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the
reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of
the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum.
Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher
angular resolution and better DOA estimation performance. Results from numerical experiments are
used to show the effectiveness of our proposed method.

Keywords: MIMO radar; DOA estimation; noncircular signal; sparse representation; reweighted l1
norm penalty

1. Introduction

Multiple-input multiple-output (MIMO) radar [1] has been presented as a novel sensor array
configuration for several years, and the advantages of MIMO radar have been investigated in [2–5].
In general, MIMO radar can be categorized into statistical MIMO radar [2] and colocated MIMO
radar [3]. The purpose of statistical MIMO radar is to use the separated antennas in transmit and
receive arrays to achieve the spatial diversity gain [2]. In contrast, the colocated MIMO radar aims at
forming a virtual array with a large aperture by exploiting the orthogonal waveforms emitted by the
transmit array, which provides higher angular resolution for DOA estimation [3]. We investigate the
DOA estimation in colocated MIMO radar, where the transmit and receive arrays are located closely.

DOA estimation is a key issue in both conventional sensor array signal processing [6–8] and
MIMO radar [9–12]. For this issue, subspace-based high-resolution DOA estimation methods, such as
multiple signal classification (MUSIC) [9], estimation of signal parameters via rotational invariance
technique (ESPRIT) [10] and tensor-based ESPRIT [11], have been investigated for estimating the angles
in MIMO radar. These subspace-based methods can obtain satisfying performance with sufficient
snapshots and an adequate signal-to-noise ratio (SNR). In addition, a reduced dimensional ESPRIT
(RD-ESPRIT) is proposed in [12] by utilizing the reduced dimensional transformation technique, which
obtains the similar DOA estimation performance with the ESPRIT algorithm in [10], but has lower
computational complexity. Unfortunately, the DOA estimation performance of these subspace-based
methods will degrade significantly in the challenged criteria, such as low SNR and limited snapshots.
On the other hand, the sparse representation-based (SR-based) signal recover techniques applied for
DOA estimation have attracted more and more attention in recent years. In [13], an SR-based method
named l1-SVD (singular value decomposition) is presented, which converts the DOA estimation into a

Sensors 2016, 16, 539; doi:10.3390/s16040539 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 539 2 of 13

convex optimization problem by using the spatial sparsity of the source in sensor array systems, and
the other sparse DOA estimation methods are investigated via sparse recovery of the covariance matrix
or vector in [14,15], respectively. For MIMO radar, a reweighted l1-norm penalty method is presented
for DOA estimation in [16], in which the reduced dimensional Capon spectrum is used to design the
weight matrix for improving the DOA estimation performance. A real-valued version of the sparse
representation scheme is proposed for DOA estimation with lower computational complexity in [17],
and the SR-based 2D DOA estimation is considered in [18]. The simulation results in [13–18] have
verified that the SR-based methods exhibit better DOA estimation performance than subspace-based
methods with low SNR and limited snapshots.

In general, the DOA estimation precision depends on the aperture of array, and enlarging the
aperture of array for improving the estimation precision without extra antennas is an important
aspect in DOA estimation. The concept of noncircularity of complex random variables, vectors
or signals is introduced in [19], and the noncircularity of signals is usually considered in widely
linear processing [20,21]. It has been pointed out that the elliptic covariance matrix is E(s̄s̄T) 6= 0
for noncircular signals, while E(s̄s̄T) = 0 for circular signals, where s̄ is the complex noncircular
signals. In practical communication and radar systems, the complex noncircular signals widely exist,
such as binary phase shift keying (BPSK), amplitude modulation (AM) and unbalanced quadrature
phase shift keying (UQPSK) modulated signals. The information of the elliptic covariance matrix
of these noncircular signals can be used to enlarge the aperture of the array without extra antennas.
Then, some subspace-based methods are derived for DOA estimation in MIMO radar [22–24], and they
provide better DOA estimation performance than traditional subspace-based methods. However, these
subspace-based methods [22–24] cannot be adapted to the challenging criteria mentioned above. To the
best of our knowledge, there is no literature about the SR-based DOA estimation for noncircular
signals with an enlarged virtual array in MIMO radar. Thus, we investigate the way to exploit the
noncircularity of signals for improving the DOA estimation in MIMO radar by using the sparse
representation perspective.

Different from the previous SR-based methods [16–18] based on the assumption of complex
circular signals, we consider the complex noncircular signals in MIMO radar and propose a novel
sparsity-aware DOA estimation scheme for improving the performance. The contributions of the
proposed method are summarized as follows: (i) utilize the reduced dimensional transformation
matrix to eliminate the redundant elements in MIMO radar, then the received data can be extended
by utilizing the noncircularity of signals; (ii) formulate a weight matrix for enhancing the sparsity of
the solution by using the MUSIC-like spectrum; (iii) formulate a joint sparsity-aware scheme based
on the reweighted l1 norm penalty for DOA estimation. Due to using both the the noncircularity
of signals and the reweighted l1 norm penalty to enhance the sparsity of the solution, the proposed
scheme achieves better angle estimation performance and higher resolution than traditional l1 norm
penalty-based methods.

The remainder of the paper is organized as follows. In Section 2, we describe the MIMO radar
signal model with noncircular signals. A joint sparsity-aware scheme based on the reweighted l1 norm
penalty for DOA estimation of noncircular sources is proposed in Section 3. In Section 4, we give some
related remarks and the Cramèr–Rao bound of noncircular signals in MIMO radar. Simulation results
are presented to demonstrate the advantages of the proposed scheme, while the conclusions are given
in Section 6.

Notation: (·)H, (·)T, (·)−1, (·)∗ and det(·) are conjugate-transpose, transpose, inverse, conjugate
and determinant operators, respectively. {A}(l2) represents a column vector whose q-th element is
equal to the l2 norm of the q-th row of A. ⊗ and � denote the Kronecker product and Khatri–Rao
product, respectively; IK is a K× K dimensional unit matrix. E[·] denotes the expectation operator,
and diag(a) represents a diagonal matrix whose diagonal elements are the components of the vector a.
|| · ||1 and || · ||F are the l1 norm and Frobenius norm, respectively.
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2. Problem Formulation

2.1. MIMO Radar Signal Model

We assume a narrowband colocated MIMO radar, shown in Figure 1, with M transmit antennas
and N receive antennas. In such system, both transmit and receive antennas are arranged in
half-wavelength-spaced uniform linear arrays (ULAs), i.e., dr = dt = λ/2, where dr and dt are
the distance between adjacent sensors in the transmit and receive arrays, respectively, and λ is the
wavelength. The transmit and receive arrays are located closely; therefore, the direction of arrivals
(DOAs) of a target with respect to both transmit and receive arrays can be regarded as essentially
the same. In the transmit side, M orthogonal noncircular waveforms, supposed BPSK modulation,
are emitted, and the matched filters are designed according to these orthogonal waveforms. Let P
denote the number of targets, and it is assumed to be known in this paper. The received data obtained
from the receive antennas can be processed by utilizing matched filters, then the received data can be
modeled as [16,17]:

x(t) = Asc(t) + n(t) (1)

where x(t) ∈ CMN×1 is the received data vector and sc(t) ∈ CP×1 is the complex-valued noncircular
signal vector. A = At �Ar = [at(θ1)⊗ ar(θ1), · · · , at(θP)⊗ ar(θP)] ∈ CMN×P is the transmit-receive
steering matrix; At = [at(θ1) · · · , at(θP)] ∈ CM×P is the transmit steering matrix whose p-th column
is the transmit steering vector at(θp) = [1, ej sin θp , · · · , ej(M−1) sin θp ]T, p = 1, 2, · · · , P corresponding
to the p-th DOA denoted as θp. Ar = [ar(θ1), · · · , ar(θP)] ∈ CN×P is the receive steering matrix
composed of the the receive steering vector ar(θp) = [1, ej sin θp , · · · , ej(N−1) sin θp ]T. n(t) ∈ CMN×1 is
the additional stochastic complex Gaussian noise vector, whose mean and covariance matrix are zeros
and σ2IMN , respectively, and σ2 is the power of noise. In a practical situation, multiple snapshots are
necessary, then the received data matrix can be expressed as:

X = ASc + N (2)

where X = [x(t1), x(t2), · · · , x(tJ)] ∈ CMN×J is the received data matrix and J is the
number of snapshots. Sc = [sc(t1), sc(t2), · · · , sc(tJ)] ∈ CP×J is the noncircular signal matrix.
N = [n1(t), n(t2), · · · , n(tJ)] ∈ CMN×J is the additional stochastic complex Gaussian white
noise matrix.
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Figure 1. The configuration of the MIMO radar.
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2.2. Noncircular Signals

Circularity is a very important characteristic of complex random variables, vectors or signals [19].
For a zero-mean stationary complex signal sequence y ∈ Cm×1, the concept of circularity based on
second orders statistical is defined as:

E[yyH] = δ2

E[yyT] = ρeφδ2 (3)

where eφ is the noncircular phase. 0 ≤ ρ ≤ 1 is the circularity rate depending on the modulation type
of the signal. The zero-mean stationary complex signal sequence can be said to be circular if ρ = 0 and
noncircular if 0 < ρ ≤ 1. In this paper, we consider the special modulated signals that are completely
noncircular, i.e., ρ = 1, like BPSK and AM modulation signals, in MIMO radar. Then, the noncircular
signal vector in Equation (1) is expressed as [22–24]:

sc(t) = Φs(t) (4)

where Φ = diag([ejϕ1 , · · · , ejϕP ]) is the noncircular phase matrix with the initial phase ϕ that should
be different for each target and satisfies ϕ = 2φ when ρ = 1 and s(t) ∈ RP×1 is the real-valued part.
Obviously, the covariance matrix and elliptic covariance matrix satisfy E[ScSH

c ] 6= 0 and E[ScST
c ] 6= 0,

respectively. Substituting Equation (4) into Equation (2), we have:

X = AΦS + N (5)

where S = [s(t1), s(t2), · · · , s(tJ)] ∈ RP×J is the real-valued matrix.

3. Sparse Representation Scheme for DOA Estimation of a Noncircular Source

In the subspace-based methods [22–24], the noncircularity of signals in Equation (5) can be used to
enlarge the virtual aperture of MIMO radar, but these subspace-based methods need a large quantity of
snapshots and high SNR to obtain high DOA resolution. One the other hand, the sparse representation
scheme [16,17] can be straightforwardly applied for DOA estimation based on Equation (2). However,
they do not take the possible noncircularity of signals into account. In the following section, a novel
joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation
by using the noncircularity of signals.

According to the transmit-receive steering vector at(θ)⊗ ar(θ), it can be concluded that there
exists many redundant elements due to the special configuration of MIMO radar. Then, the steering
vector at(θ)⊗ ar(θ) can be written as:

at(θ)⊗ ar(θ) = Gb(θ) (6)

where G ∈ CMN×Q is a full-rank transformation matrix and b(θ) ∈ CQ×1(Q = M + N − 1) is a
one-dimensional steering vector. They are expressed as:

G = [JT
0 , · · · , JT

M−1]
T (7)

b(θ) = [1, ej sin θp , · · · , ej(Q−1) sin θp ]T (8)

where Jm = [0N×m, IN , 0N×(M−m−1)], m = 0, 1, ..., M − 1. According to the structure of the
transformation matrix, the matrix F = GHG is written as:

F = diag[1, 2, ..., min(M, N), ..., min(M, N)︸ ︷︷ ︸
|M−N|+1

, ...., 2, 1] (9)
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According to Equations (6) and (9), it is indicated that the redundant elements can be eliminated
by using the transformation matrix GH. However, the colored noise will be added by using
GH. In order to solve this issue, a novel reduced-dimensional matrix can be formulated as
Ḡ = F−1/2GH [12], which satisfies with ḠḠH = IQ, and this means that the matrix Ḡ is an orthogonal
matrix. Then, multiplying Ḡ by the received data X, we have:

Y = ḠX = ḠASc + ḠN

= F1/2BSc + ḠN = B̄Sc + N̄
(10)

where B̄ = F1/2B with B = [b(θ1), · · · , b(θP)], and N̄ = ḠN. After the reduced dimensional
transformation, the mean and covariance matrix of the nose matrix are E[N̄] = ḠE[N] = 0 and
E[N̄N̄H] = ḠE[NNH]ḠH = σ2IQ. Thus, the noise matrix is also a complex Gaussian distribution.
After eliminating the redundant elements, the matrix Y in Equation (10) can be regarded as the
received data of a ULA with weight matrix F1/2. In addition, taking the noncircularity of signals into
account, i.e., exploiting the information of elliptic covariance matrix E[ScST

c ] 6= 0, the extended data of
Equation (10) can be expressed as [22–24]:

Z =

[
ΓQY∗

Y

]
=

[
ΓQB̄∗S∗c

B̄Sc

]
+

[
ΓQN̄∗

N̄

]
(11)

where ΓQ is the Q×Q exchange matrix with ones on its anti-diagonal and zeros elsewhere. Due to
the fact that the noncircular signal matrix Sc has the real-part S = S∗ shown in Equation (5), the
Equation (11) can be rewritten as:

Z =

[
ΓQB̄∗Φ∗

B̄Φ

]
S +

[
ΓQN̄∗

N̄

]
= F̄BeS + Ne (12)

where Ne is the noise matrix after extending the received data. Be = [be(θ1, ϕ1), · · · , be(θP, ϕP)] is the
new steering matrix, and the steering vector be(θp, ϕp) and F̄ can be written as:

be(θp, ϕp) = [e−j(Q−1) sin θp e−jϕp , · · · , e−jϕp , ejϕP ,

ej sin θp , · · · , ej(Q−1) sin θp ejϕP ]T
(13)

and:

F̄ =

[
F1/2 0
0 F1/2

]
(14)

In order to exploit the sparse representation viewpoint for Equation (12), the sparse signal model
must be established firstly by formulating the complete dictionary. Noting the steering vector be(θp, ϕp)

in Equation (13) contains the unknown additional phase, the extended received data Z cannot be
turned into the sparse representation model. However, due to the fact that the extended data are
composed of the received data in Equation (5) and its conjugation, the extended data Z can be turned
into two sparse representation models without the effect of the unknown additional phase, and then, a
joint sparsity-aware scheme is proposed for taking the noncircularity into account. When utilizing the
sparse representation viewpoint, the SVD technique [13] can be used to reduce the dimension of the
recovered matrix. Then, the SVD of the extended received data in Equation (12) can be shown as:

Z = [Us Un]

[
Σs 0
0 Σn

] [
VH

s
VH

n

]
(15)
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where Us ∈ C2Q×P and Vs ∈ CJ×P are composed of left and right singular vectors corresponding to
the P largest singular values. Un ∈ C2Q×(2Q−P) and Vn ∈ CJ×(J−P) are composed of left and right
singular vectors corresponding to the residual 2Q− P singular values. Σs and Σn are diagonal matrices
whose diagonal elements are the P largest singular values and the residual 2Q− P singular values,
respectively. Multiplying the received signal Z by Vs, we can obtain:[

Zs1

Zs2

]
=

[
ΓQB̄∗Φ∗SVs

B̄ΦSVs

]
+

[
ΓQN̄∗Vs

N̄Vs

]
=

[
B̂Ŝs

B̄S̄s

]
+

[
N̂s

N̄s

]
(16)

where Zs1 ∈ CQ×P and Zs2 ∈ CQ×P, B̂ = ΓQB̄∗, Ŝs = Φ∗SVs, S̄s = ΦSVs, N̂s = ΓQN̄∗Vs and
N̄s = N̄Vs. By exploiting the sparsity of targets corresponding to the whole spatial space, let
{θ̂i}L

i=1(L� P) be a grid that covers Ω, where Ω denotes the set of possible DOAs, and two complete
dictionaries can be constructed as:

B̄θ̂ = F1/2[b(θ̂1), b(θ̂2), · · · , b(θ̂L)] ∈ CQ×L

B̂θ̂ = ΓQF1/2[b∗(θ̂1), b ∗ (θ̂2), · · · , b∗(θ̂L)] ∈ CQ×L
(17)

Then, two sparse representation models corresponding to Equation (16) can be expressed as:

Zs1 = B̂θ̂ Ŝθ̂
s + N̂s

Zs2 = B̄θ̂ S̄θ̂
s + N̄s

(18)

where Ŝθ̂
s ∈ CL×P and S̄θ̂

s ∈ CL×P have the same sparsity with Φ∗SVs and ΦSVs, respectively.
The noncircularity of signals cannot be used if the sparse matrices in Equation (18) are solved
independently by using the conventional l1 norm penalty-based methods [16,17]. In order to use
the possible noncircularity of signals, a joint sparsity-aware scheme is proposed for combining the
signal information contained in Zs1 and Zs2. Noting Ŝθ̂

s and S̄θ̂
s have the same sparsity, a joint sparse

representation framework based on the l1 norm penalty can be formulated for DOA estimation, which
can be expressed as:

min ‖ Υ ‖1

s.t. Υ(i) ≥
√
({S̄θ̂

s}(l2)(i))2 + ({Ŝθ̂
s}(l2)(i))2,

i = 1, 2, · · · , L.

‖ Zs1 − B̂θ̂ Ŝθ̂
s ‖F≤ β1

‖ Zs2 − B̄θ̂ S̄θ̂
s ‖F≤ β2

(19)

where Υ ∈ CL×1 is a sparse vector and Υ(i) is the i-th element of Υ. {S̄θ̂
s}(l2)(i) and {Ŝθ̂

s}(l2)(i) are the
i-th element of {S̄θ̂

s}(l2) and {Ŝθ̂
s}(l2), respectively. β1 and β2 are the regularization parameters. It has

been pointed out in [25] that the sparse solution of the l1-norm penalty does not approximate better
to the l0-norm penalty in Equation (19), which leads to the limited recover performance. In [16], the
weight matrix based on reduced dimensional capon spectrum is designed to enhance the sparsity
of the solution. However, it cannot be used to formulate the weight matrix based on Equation (12)
due to the unknown additional phase. Inspired by [16,25], a weight matrix can be formulated for
enhancing the sparsity of the solution based on the noncircular MUSIC-like spectrum. Exploiting the
orthogonality of the steering vector be(θ, ϕ) and its corresponding noise subspace Un, we have:

f (θ, ϕ) = [ejϕ, e−jϕ]Ω(θ)

[
e−jϕ

ejϕ

]
→ 0 (20)
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where:

Ω(θ) =

[
ΓQb∗(θ) 0

0 b(θ)

]H

F̄HUnUH
n F̄

[
ΓQb∗(θ) 0

0 b(θ)

]
= C(θ)HUnUH

n C(θ)

(21)

and:

C(θ) = F̄

[
ΓQb∗(θ) 0

0 b(θ)

]
(22)

Due to [ejϕ, e−jϕ] 6= 0, the Ω(θ) ∈ C2×2 is positive definite and a consistent estimate of the rank
deficient matrix. Consequently, the noncircular MUSIC-Like spectrum [26] can be expressed as:

f (θ) = arg min
`
(det(Ω(θ))) (23)

According to the grid {θ̂i}L
i=1(L� P), the matrix C(θ̂i)(i = 1, 2, · · · , L) can be obtained. Then, the

elements of the weight vector φ = [φ1, φ2, · · · , φL] can be expressed as:

φi = det(Ω(θ̂i)), i = 1, 2, · · · , L (24)

It can be concluded that the element φi satisfies φi → 0 when the DOA θ̂i corresponds to the
possible targets and otherwise φi � 0. Then, the weight matrix is formulated as:

W = diag(φ)/max(φ) (25)

Due to the characteristic that the elements φi/max(φ)(i = 1, 2, · · · , P) corresponding to the
possible targets are much smaller than other elements φi/max(φ)(i = 1, 2, · · · , L− P) in Equation (25),
the weight matrix W for the MMVproblem can achieve the viewpoint of the reweighted l1 norm
penalty in [16,25]. Finally, the joint sparsity-aware scheme based on the reweighted l1 norm penalty is
formulated as:

min ‖ WΥ ‖1

s.t. Υ(i) ≥
√
({S̄θ̂

s}(l2)(i))2 + ({Ŝθ̂
s}(l2)(i))2,

i = 1, 2, · · · , L.

‖ Zs1 − B̂θ̂ Ŝθ̂
s ‖F≤ β1

‖ Zs2 − B̄θ̂ S̄θ̂
s ‖F≤ β2

(26)

Obviously, Equation (26) is a convex optimization problem, and some SOC (second order cone)
programming software packages, such as CVX [27] and SeDuMi [28], can be used to solve it effectively.
Then, the DOAs of targets are estimated by searching the spectrum of Υ.

4. Related Remarks and the Cramer–Rao Bound

Remark 1: In Equations (19) and (26), the selection of the regularization parameters β1 and β2 is
very important for final DOA estimation and depends on the distribution of the noise matrices N̂s and
N̄s. Due to the fact that both ||N̂s||2F and ||N̄s||2F satisfy with the asymptotically chi-square distributed
with QP degrees of freedom, the parameters β1 and β2 can be selected as the upper value of ||N̂s||2F
and ||N̄s||2F with a high probability 1− ξ confidence interval, i.e., ξ = 0.01 is enough.

Remark 2: Compared to the conventional l1-norm penalty-based methods, the proposed
sparsity-aware scheme uses the noncircularity of signals to improve the performance. Furthermore, due
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to the NC MUSIC-like spectrum corresponding to the larger virtual aperture in MIMO radar, the
weight matrix can be formulated more correctly to punish the entries. Consequently, the enhanced
sparse solution can be obtained, and then, the angle estimation performance can be further improved.

Remark 3: The computational complexity of the proposed method is analyzed and compared
to the l1-SVD method [13] and the reweighted l1-norm penalty method in [16]. According to the
implementation procedure of the proposed method, the main computational burden of the proposed
method focuses on designing the weight matrix and solving the convex optimization problem in
Equation (26). Designing the weighted matrix requires O{8Q3 + (8Q3 + (8− 4P)Q2 + 8Q)L}, and
solving the convex optimization problem requires O{LP3}. Then, the total computational complexity
of the proposed method is O{(8Q3 + [8Q3 + (8 − 4P)Q2 + 8Q]L + LP3}; while the l1-SVD and
reweighted l1-norm penalty methods require O{LP3} and O{Q2 J +Q3 + L[Q2 +(P− 1)Q− P] + LP3},
respectively. The proposed method has higher computational complexity than both the l1-SVD and
the reweighted l1-norm penalty methods, but the proposed method achieves better performance and
higher resolution than them.

Cramer–Rao bound (CRB): In this section, we derive the CRB of DOA estimation for noncircular
signals in MIMO radar. Exploiting the noncircularity of the signals, the received data in Equation (2)
can be extended as [22–24]:

Ȳ =

[
ΓMNX∗

X

]
=

[
ΓMNA∗s∗c (t)

Asc(t)

]
+

[
ΓMNN∗

N

]
= ĀS + N (27)

where:

Ā =

[
ΓMNA∗Φ∗

AΦ

]
N =

[
ΓMNN∗

N

]
(28)

Based on the extended data model in Equation (28), the data model can be regarded as the received
data of a novel uniform linear array with the the steering matrix Ā, and both the signal matrix S and
noise matrix N are Gaussian distributed with zero mean. Thus, according to [29], the CRB of DOA
estimation for noncircular signals in MIMO radar can be derived as:

CRB =
δ2

2J
{Re(DHΠ⊥ĀD� Ps}−1 (29)

where δ2 is the power of the noise. Π⊥Ā = I2MN − Ā(ĀHĀ)−1ĀH, Ps = E[SSH] and
D = [∂ā1(θ)/∂(θ), · · · , ∂āP(θ)/∂(θ)] is the matrix whose p-th column is given by the derivative
of āp(θ) with respect to θp. āp(θ) denotes the p-th column of Ā.

5. Simulation Results

In what follows, we evaluate the performance of the proposed method by comparing to the
l1-SVD method [13], the reweighted l1-norm penalty method in [16] and the (CRB) in Equation (29).
Except as otherwise noted in the following simulation results, we consider a colocated MIMO radar
with M = 5 transmit antennas and N = 6 receive antennas. Both transmit and receive antennas are
arranged in half-wavelength-spaced uniform linear arrays (ULAs), and the transmit and receive arrays
are located closely. It is assumed that the number of targets is to be known, and the SNR can be
defined as 10log10(||ASc||2F/||N||2F). The spatial sampling interval is 0.1◦ for constructing the complete
dictionary, and the confidence interval is set to 0.99 for all of the methods. The root-mean-square-error
(RMSE) of the DOA estimation is defined as:

RMSE =

√√√√ 1
100P

100

∑
i=1

P

∑
p=1

(θ̂i,p − θp)2 (30)
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where θ̂i,p represents the estimation of θp at the i-th trial.
Figure 2 shows the spatial spectra of three algorithms, where there are P = 3 uncorrelated targets

with the DOAs as θ1 = −8◦, θ2 = 0◦ and θ3 = 10◦. The SNR is 0 dB, and the number of snapshots
is 100. From Figure 2, it is indicated that the proposed method has a lower sidelobe than both the
l1-SVD algorithm and the reweighted l1-norm penalty method, which means that the proposed method
exhibits higher resolution than both of them.
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Figure 2. The spatial spectra of the l1-SVD method, the reweighted l1-norm penalty method and the
proposed method.
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Figure 3. RMSE of the l1-SVD method, the reweighted l1-norm penalty method and the proposed
method when the SNR varies from −10 dB to 15 dB.

Figure 3 shows the RMSE versus SNR with different methods, where there are P = 3 uncorrelated
targets with the DOAs as θ1 = −8◦, θ2 = 0◦ and θ3 = 10◦, and the number of snapshots is 100. As can
be seen from Figure 3, the reweighted l1-norm penalty method has a lower RMSE than the l1-SVD
algorithm in all SNR region. This is because the reweighted l1-norm penalty method uses the capon
spectrum to design the weight matrix for enforcing the sparsity of the solution. On the other hand,
the proposed method outperforms both the l1-SVD algorithm and the reweighted l1-norm penalty
method at all SNR regions, and the RMSE of the proposed method is closer to CRB than other methods.
The reason is that both the noncircularity of signals and the reweighted l1 norm penalty are used to
enhance the sparsity of the solution in the proposed method.
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Figure 4 shows the RMSE versus snapshots with different methods, where there are P = 3
uncorrelated targets with the DOAs as θ1 = −8◦, θ2 = 0◦ and θ3 = 10◦, and the SNR is fixed at 0 dB.
From Figure 4, it can be seen that the angle estimation performance of all methods is improved with
the increased snapshots. Furthermore, the proposed method provides better performance than the
l1-SVD and the reweighted l1-norm penalty methods.
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Figure 4. RMSE of the l1-SVD method, the reweighted l1-norm penalty method and the proposed
method when the snapshots varies from 50 to 500.
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Figure 5. Target resolution probability of the l1-SVD method, the reweighted l1-norm penalty method
and the proposed method when the SNR varies from −10 dB to 30 dB.

Figure 5 shows the target resolution probability versus SNR with different method, where there
are P = 3 uncorrelated targets with the DOAs as θ1 = −8◦, θ2 = 0◦ and θ3 = 10◦, and the snapshots
are fixed at 100. In this simulation, all targets can be seen as successful detections when the absolute
DOAs for all targets are within 0.5◦. As seen in Figure 5, all methods achieve 100% successful detection
probability when the SNR is high enough. On the other hand, the probability of target resolution for
each method begins to descend at a certain point, which is known as the SNR threshold. Both the
l1-SVD and the reweighted l1-norm penalty methods provide higher SNR threshold than the proposed
method, which means that the proposed method has superior angular resolution when detecting
closely-spaced targets.
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Figure 6 shows that RMSE versus the number of targets with different methods, where the SNR
and the number of snapshots are set as 0 dB and 100, respectively. Assuming that the number of
targets is P and the DOA corresponding to the p-th target is −20◦ + (p− 1)10◦, from Figure 6, it is
indicated that the performance of three methods become poorer with the increased number of targets.
In addition, the proposed method exhibits better performance than the l1-SVD and the reweighted
l1-norm penalty methods. This is because the proposed method owns the sparsest solution compared
to the l1-SVD and the reweighted l1-norm penalty methods.
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Figure 6. RMSE of the l1-SVD method, the reweighted l1-norm penalty method and the proposed
method versus the number of targets.
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Figure 7. RMSE of the proposed method versus different elements when the SNR varies from −10 dB
to 15 dB.

Figure 7 shows the RMSE versus different transmit and receive elements, where the number of
the snapshots is set as 100. The number of targets is P = 3, and the DOAs are θ1 = −8◦, θ2 = 0◦ and
θ3 = 10◦, respectively. As the number of transmit and receive elements increases, the performance of
the proposed method can be improved. This is because the more transmit and received elements the
MIMO radar has, the more spatial diversity gain can be achieved.
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6. Conclusions

In this paper, we proposed a novel sparsity-aware DOA estimation scheme for a noncircular
source in MIMO radar. The proposed method exploits the noncircularity of signals and the weight
matrix to formulate the joint sparsity-aware scheme for enhancing the sparsity of solution, which
improves the DOA estimation performance. Simulation results verify that compared to the l1-SVD
and the reweighted l1-norm penalty methods, the proposed method achieves better angle estimation
performance and higher resolution.
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