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Ultralow Power Always-On Intelligent and
Connected SNN-Based System for Multimedia

IoT-Enabled Applications
Qi Liu , Member, IEEE, and Zhixuan Zhang

Abstract—The recent advances in artificial neural networks
(ANNs) have created immense opportunities to achieve excel-
lent results on the Internet of Things (IoT), which serve the
uses of various real-time smart applications, such as in com-
puter vision and speech recognition. However, the efficiency of
ANNs comes at the expense of a huge number of computational
resources. This tends to necessitate larger and wider ANNs unap-
plicable for embedded systems with limited hardware resources,
e.g., mobile and wearable devices. To that end, biologically real-
istic spiking neural networks (SNNs) are first employed to build
an always-on intelligent and connected integrated IoT-enabled
system with ultralow power consumption, where we encode the
temporal dynamic stimuli into effective, efficient, and recon-
structable spike patterns to facilitate the subsequent processing.
Herein, neural encoding plays a key role in faithfully describ-
ing the temporally rich patterns for downstream cognitive tasks.
Therefore, a novel nonlinear piecewise latency coding approach
for a fully event-driven SNN system is developed. Moreover, a sur-
rogate postsynaptic potential kernel function is utilized to address
the nondifferential nature of the spike generation scheme when
using the error backpropagation learning method. The effective-
ness of the proposal tandem with SNNs has been corroborated by
indicative empirical results on different data sets serving cognitive
tasks.

Index Terms—Deep learning, efficient learning, image
classification, Internet of Things (IoT), latency coding, speech
recognition, spiking neural network.

I. INTRODUCTION

THE RAPID developments in the Internet of Things
(IoT) and wireless sensor networks (WSNs) have spurred

new capabilities leveraging massively distributed sensing
across wide areas [1], and also endowed immense oppor-
tunities to connect and expand the communication between
humans (or users) and things from the physical world in
our daily life. As shown in Fig. 1, the emerging multimedia
IoT [2], [3] has attracted on-going interests for researchers and
practitioners alike, which integrates inherent capabilities of
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mobile communication, computer vision, auditory, tactile, and
olfactory perception [4], enabling the potentials for edge com-
puting applications, ranging from voice activity detection, text
generation, object detection, large-scale image classification to
human action recognition, and to name just a few [5]–[7].

The IoT enables the seamless integration of sensors, actu-
ators, and communication devices for real-time sensing, com-
municating, and remote controlling [8], which, to some extent,
is attributed to the advances in deep learning or artificial intel-
ligence (AI). Artificial neural networks (ANNs), as one of the
most profound AI approaches, have achieved their fatal suc-
cess via leveraging big data generated from widespread WSN
sensors and ever-growing computing capability. However, with
the almost double increase of mobile data traffic every year,
e.g., in massive multiple-input–multiple-output system [9], the
high requirements of network bandwidth, transmission qual-
ity, energy consumption, and processing capacity of nodes
limit the enabling IoT applications with deep learning. What
is more, it becomes much more challenging owing to the sub-
stantially more complex processing required, and the lack of
sensor nodes able to operate for a long time without having
to replace batteries. Taking the audio processing as an exam-
ple, the data rate associated with audio signals prohibits the
continuous transmission of raw data, as best-in-class radios
consuming 5 nJ/bit (i.e., ∼500 μW of power) will drain a
button cell battery in ∼15 days [10], [11]. No significant bat-
tery life extension is allowed by on-chip audio compression.
To achieve a long lifetime, sensor nodes of WSN require to be
intelligent enough that they generally transmit aggregate data,
while transmitting samples only events of interest occur. This
inspires ANNs potentially being fully event-driven1 networks
instead of data-driven ones.

On the other hand, one fundamental challenge in the dis-
tributed IoT enablement with deep learning is the impossibility
of hosting the intelligence entirely in the cloud, although this
is the mainstream approach followed today in a simple sens-
ing framework. This is because of the increasing density in
wireless communications [12]. At the same time, allocating
the intelligence entirely to intelligent sensors (e.g., micro-
phones and cameras) is not a good choice either, as this will
become too power costly on the side of sensor nodes (i.e., a
long lifetime would be severely limited by the energy cost of

1Different from the data-driven ANNs, SNNs only trigger a postsynaptic
potential (PSP) function when one of spikes is detected.
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Fig. 1. Block scheme of generic multimedia IoT system.

local computation). In other words, the task should lie in the
exploration of innovative processing frameworks that can be
optimally distributed between nodes and the cloud (or other
intermediate levels of processing). For example, processing at
the sensor node level needs to be performed extremely effi-
cient to operate in an event-driven way to drastically limit
power consumption and data deluge on the cloud, to further
allow a global understanding, detection of acoustic events,
human actions, and other activities. To summarize, to deal
with the inevitably large amount of data produced by WSN,
event-driven schemes are imperative, so that wireless commu-
nications from the sensor nodes to the cloud are selectively
triggered by activities (e.g., acoustic events), rather than being
continuous.

As a compelling use case, strong demand for always-on
intelligent and highly connected energy-autonomous integrated
systems is rising from the recent convergence of IoT and
embedded AI. Such systems continuously monitor sensor
signals, detect the occurrence of events of interest, make
sense of events through on-chip data analytics, and wirelessly
provide the cloud with fine-grain big data for event compre-
hension. Intelligent and connected devices are expected to
be deployed in smart cities, smart homes, industrial plants,
wearables, connected cars, and several other applications [13]
that benefit from the creation of large networks of connected
devices responding intelligently to the stimuli coming from
the environment. Nevertheless, with the boost of performance,
the whole network architecture from deep learning becomes
deeper and wider, which leads to much higher requirements
of computational resources and storage space for the inference
process.

The neuroscience research offers a bountiful source of
inspiration for building human-like computational intelligence
systems. Notably, the brain-inspired spiking neural networks
(SNNs), which are considered as the third generation of neu-
ral network models, have shown great potential with high
performance, energy-efficient computing [14]. Unlike tradi-
tional ANNs, the biologically realistic SNN models explicitly

incorporate the concept of time into the computation. They
encode and represent information by the precisely timed
spikes, therefore, making SNN a promising candidate for pro-
cessing temporally rich signals, such as speech and action [15].
By incorporating the time into the computation, it has been
demonstrated that SNN models are potentially more efficient
than ANN counterparts for data processing [16].

Similar to ANNs, the feedforward computational SNN mod-
els for pattern recognition tasks are comprised of three parts:
1) encoding; 2) learning; and 3) readout layers. Herein, the
encoding layers are considered as a feature extractor to encode
the raw images (or spectrograms for speech recognition) to
spike trains, resulting in the spatial–temporal patterns, and
they are classified by the learning and readout layers with
synaptic weights. Thus, it can be seen that the accuracy of
feature extraction directly affects the whole SNN system’s
performance. Our work is mainly focused on the former encod-
ing part with a novel coding approach. SNNs, mimicking
brain functionality, make full use of only addition opera-
tions, instead of multiply-and-accumulate (MAC) operations
in standard ANNs, and enable to take advantage of signifi-
cantly reducing the computational complexity. This is in part
attributed to different efficient encoding approaches, including
two representatives: 1) rate based and 2) temporal based. In
rate-based encoding approaches, patterns are encoded by the
average number of spikes over a period of time and each spike
will trigger memory accesses to load neural network parame-
ters, which require to be fetched from on- or off-chip memory,
leading to a relatively high power consumption with the corre-
sponding rate-based neural networks. Thereby, temporal-based
encoding techniques are fertile research ground that merits fur-
ther investigation. Inspired by SNNs, it has been widely used
in different cognitive applications in our daily life, including
waking up keywords for connected audio devices [17] and
classifying images [18]. However, they are built on the basis
of computationally demanding rate-based encoding scheme.

In this work, to address the above problems, an ultralow
power always-on intelligent and connected system is proposed
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Fig. 2. Block scheme of the proposed multimedia IoT-enabled framework, which composed of a large number of actuators and sensors performing sensing
and data processing, and smart-sensing capabilities, such as prediction, categorization, and decision making. With the aid of deep learning, intelligent sensing
and decision making will reduce economic losses and improve the safety of smart industrial environments.

from the viewpoint of IoT-enabled applications. Our work
takes notable contributions summarized as follows.

1) An always-on intelligent SNN-based auditory and visual
system is developed, taking the advantage of IoT enable-
ment.

2) Considering the energy-efficient computing, a novel
nonlinear piecewise latency coding method is designed,
combined with SNNs to achieve not only efficiently
computational complexity but also superior accuracy
on the applications of image classification, keyword
spotting, and voice activity detection.

The remainder of this article is organized as follows. In
Section II, we show the sparse temporal feature encoding
using the piecewise latency coding approach. In Section III, we
explain each individual system of the proposed human–robot
auditory interface in detail. Then, we present the experimen-
tal results on the learning capability and energy efficiency of
the proposed system in Section IV. Finally, we conclude this
article in Section V.

II. PROPOSED IOT-ENABLED ALWAYS-ON

INTELLIGENT SYSTEM

Complexity is one of the major issues for deep learning
models, requiring extra effort to resolve. As many industrial
IoT devices are mobile and small in size, they have limited
computational power, memory, and battery life, requiring them
to offload heavy computations. However, this may not always
be possible, for several reasons. Since security and privacy
issues have become a great challenge in the IoT [19], criti-
cal data should not be transmitted on the Internet. Similarly,
offloading the data and computations to the cloud generates
high transfer latency, which may not be suitable for many time-
critical real-time applications. Thus, it is of utmost importance
to devise efficient deep learning algorithms that can process
data locally on IoT devices.

Fig. 2 shows the proposed IoT-enabled framework for
ultralow power always-on intelligent SNN-based system. The
proposed architecture introduces intelligent sensors (e.g.,
microphones, cameras, and other electronic devices) both as
sensing and processing frontend, which converts the recorded

Fig. 3. Illustration of the piecewise latency coding method.

raw data into event-based information representation and
extracts relevant information on events. The primary motiva-
tion is to process information locally (in-sensor) and transmit
only aggregate information to the cloud (or server), eliminating
the prohibitive power consumption associated with the wire-
less transmission and communication of detailed samples. We
describe individual systems in detail.

A. Sparse Temporal Feature Encoding

In this section, we aim at generating spike patterns using
the proposed nonlinear piecewise latency coding method.
Different from the data representation of the ANNs, the
information is represented and exchanged via stereotypical
action potentials or spikes in the SNNs. The firing rate and
temporal structure of the spike train2 are both considered as
important information carriers in the biological neural systems.

In order to process information locally, samples recorded
from different sensors should be encoded into events. Herein,
the idea of time-to-first-spike (TTFS) scheme can be applied
to achieve efficient computation. The conventional TTFS using
linear latency coding, as the common representative of tem-
poral encoding method, has been widely used for SNNs. The
function of linear latency coding method is plotted in Fig. 3.

2A spiking neuron performs a nonlinear transformation over the analog
current fed to it through synapses to generate a point process of stereotyped
events in its membrane potential, called action potentials or spikes. The output
point process of spikes is also called spike train [20].
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Fig. 4. Illustration of the latency encoding method, where the intensity
value is encoded into the spike timing per pixel based on the reverse coding
rule. Each horizontal bar represents the intensity value of image pixel pro-
portionally, that is, a brighter pixel corresponding to the longer bar. Thus, the
resulting spike fires earlier in the encoding window. (a) Raw image. (b) Pixel
luminance. (c) Encoding window time.

It fires only one spike at most per neuron for each input
during each inference pass and enjoys fewer spikes in com-
parison with the rate-based encoding counterpart. Following
the reverse coding rule that the larger the pixel is, the shorter
the delay time to fire a spike, as illustrated in Fig. 4.

However, it is hoped that those features with smaller real
values, such as background noise and edge information, can
be encoded more later, while ones with larger real values (i.e.,
carried more important information) should go into the subse-
quent neural network earlier and others keep with appropriate
delay time. The reason behind that is because we expect the
proposed encoding method to enjoy the background noise sup-
pression as well as to preserve the edge information for further
performance improvement. Moreover, based on the Weber–
Fechner law,3 the brightness response of the human eye is
logarithmic over a wide range of luminance. The logarith-
mic response is also only valid within the normal luminance
range. More detailed studies have shown that the brightness
response of the human eye is very complex over a wider
range of brightness and has to be described by some piecewise
functions.

Inspired by the Weber–Fechner law, a novel nonlinear piece-
wise latency coding approach for SNNs is designed to achieve
not only efficiently computational complexity but also supe-
rior accuracy on the applications of image classification and
speech recognition. Over a large enough time interval (called
time window), the real-valued pixel intensities of input image
are mapped to the spike timings for SNNs during inference.
The time step is used to keep track of the discrete time, and the
total time steps (latency) required are dictated by the desired
inference accuracy.

As is well known, the traditional linear latency coding
approach has been used intensively in temporal encoding
schemes. Given the normalization data Xi, the corresponding
spike time for each real value p is shown as

ti = Tmax − Xi ∗ (Tmax − Tmin) (1)

where Tmax and Tmin represent the boundary of the encoding
window. From (1), we can see that the larger the real value
is, the shorter the delay time is [21]. It is hoped that those
features with smaller real values, such as background noise and

3One application of the Weber–Fechner law is logarithmic coding schemes
for neurons.

Fig. 5. Brain-like integrate-and-fire model corresponding to its physical
circuit. (a) Time course of the membrane potential of a LIF neuron is driven
by several constant input currents xi. The dendrite plays the role of collecting
signals from other neurons and transmitting to the “central processing unit,”
called soma, which performs the function of nonlinear processing. When the
sum of total input exceeds a certain threshold, an output spike is generated
and then delivered to other neurons by the axon. After firing a spike, the
membrane potential is reset to Vrest. (b) Equivalent physical circuit of LIF
neuron.

edge information, can be encoded more later, while ones with
larger real values (i.e., carried more important information)
should go into the subsequent neural network earlier and the
rest keeps with appropriate delay time. The reason behind that
is because we expect the proposed encoding method to enjoy
the background noise suppression as well as to preserve the
edge information for further performance improvement. This
motivates us to devise an efficient piecewise latency coding
approach for SNNs. To be specific, it is designed as

ti =

⎧
⎪⎨

⎪⎩

Tmax − Xi × (Tmax − Tmin), if Xi < α(
2

Xi+1 − 1
)

× (Tmax − Tmin) + Tmin, if α < Xi < β
(
1 − sin(π

2 × Xi)
) × Tmax, if Xi > β

(2)

where α = 0.4 and β = 0.8 suffice to guarantee the
satisfactory performance in our work.

B. Spiking LIF Neuron Model

The leaky-and integrate fire (LIF) neuron model is com-
monly used for SNNs owing to its simpleness and practical-
ness, as shown in Fig. 5. In Fig. 5(a), each LIF neuron will
accumulate membrane potential from input current and then
fire a spike (for single spike SNNs) if its membrane potential
reaches the threshold. After that, neurons stay in the refractory
period. In Fig. 5 (b), its equivalent physical circuit has been
shown with a resistive-capacitor circuit composed of mem-
brane capacitances Cm and membrane resistances Rm. The
external input current is used as the driving current to simulate
the process of kinetic changes of the membrane potential of
LIF neurons. The membrane potential remains the same as the
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battery voltage Vrest in a resting state without any input cur-
rent. When the current enters the neuron circuit, the branch
current charges the capacitor, and the branch current flows
through the resistor to discharge the capacitor.

In order to analyze the circuit, the current conservation law
is utilized, leading to two components to form the driving
current

I(t) = IR + IC

= V(t) − Vrest

R
+ C

dV

dt
(3)

in which IR = (VR/R) and IC = C(dV/dt) denote the resistive
and capacitive currents, respectively. Thus, (3) becomes

RC
dV

dt
= −[V(t) − Vrest] + RI(t). (4)

The solution of the linear differential equation is V(t) = Vrest
for t ≤ 0 and given by the membrane potentional of LIF
neuron as

V(t) =
∑

j

wij

∑

f

K(t − tfj ) + Vrest, for t > 0 (5)

where the membrane potential V(t) of each neuron obeys the
above dynamics. Herein, wij and tfj denote the synaptic con-
nection weight from neuron j to neuron i and the f th spike
timing of presynaptic neuron j, respectively. Vrest represents
the resting potential of LIF neuron. In addition, K(t − tfj ) is
the normalized postsynaptic kernel. In this work, the rectified
linear PSP (ReL-PSP) kernel function [22] is applied, defined
as

K
(

t − tfj

)
= t − tfj (6)

if t > tfj , and 0 for others.
Different from the conventional ANNs using activation

functions (e.g., ReLU) to represent the nonlinear character-
istic, SNNs exploit the LIF firing computational mechanism,
which is more biologically realistic. The membrane poten-
tials of the presynaptic neurons contribute to the postsynaptic
neurons via the positive correlation with the firing time of
presynaptic spikes. The action potential, namely, spike, is trig-
gered when the membrane potential V(t) reaching over the
threshold (denoted as thr, in general, thr = 1) at the arrival
time tfr . That is

V(tfr) ≥ thr and
dV

(
tfr

)

dt
> 0. (7)

V(t) resets to the resting potential Vrest after firing and stays
at the refractory period for a time period Ra. The conductance
of a synapse, a.k.a., synaptic weight, changes depending on
the corresponding presynaptic and postsynaptic neurons activ-
ities, and the neuron’s learning ability is attributed to these
activities-dependent synaptic plasticity.

C. SNN-Based Temporal Classifier

First, we apply ON- and OFF-center DoG filters of size
wD

1 × wD
2 on the input patterns, where the DoG filter is a fea-

ture enhancement algorithm to increase the visibility of edges

and preserve other spatial information. To speed up the training
calculation time for feature extraction, we develop a new par-
allel computing structure composed of three different kernel
sizes of convolution maps and max-pooling blocks to further
detect the local features, which is motivated by the multiscale
theory. Herein, the spike-timing-dependent plasticity (STDP)-
based unsupervised learning method [23] is introduced to
achieve invariance representation of visual inputs. To employ
the STDP rule, the latency of cells is assumed as the firing time
of presynaptic and postsynaptic neurons, respectively. That is

{
�wij = a+ ∗ wij ∗ (

1 − wij
)
, if tj − ti ≤ 0

�wij = a− ∗ wij ∗ (
1 − wij

)
, if tj − ti ≥ 0

(8)

where a+ = 0.004 and a− = −0.003.
Finally, temporal information are unfolded together for

afferent neurons on spike-timing-dependent backpropagation
(STDBP)-based SNN classifier [22]. The main derivatives
using STDBP learning rule are given by

∂tj
∂wij

= ∂tj
∂Vj

(
tj
)
∂Vj

(
tj
)

∂wij
= ti − tj

∑
i wij

∂tj
∂ti

= ∂tj
∂Vj

(
tj
)
∂Vj

(
tj
)

∂ti
= wij

∑
i wij

(9)

corresponding to the derivatives of the first spike time tj
with respect to synaptic weights wij and input spike times ti,
respectively, and tj < ti.

1) Readout: To output the spikes of interest, the readout
part is applied in the last layer of the SNN-based temporal
classifier, where each learning neuron corresponds to one cat-
egory for a classification task. The category of an input pattern
will be determined by one of the neurons that generates the
lowest spike distance. Here, we utilize the softmax function
on the negative values of the spike times in the output layer,
to minimize spike times of the desired neurons as well as
to simultaneously maximize ones of the undesired neurons.
The resulting distance is measured by the cross-entropy loss
function

L(
g, to) = − ln

exp(−to[g])
∑

i exp(−to[i])
(10)

where to represents the vector of the spike times in the output
layer and g denotes the desired class index.

III. EXPERIMENTAL RESULTS

We evaluate the proposed system’s decision-making capa-
bility on cognitive tasks, including keyword spotting, image
classification, and voice activity detection. Next, we intro-
duce the experimental setups and stimulus data sets for
different cognitive tasks in detail. We perform all the exper-
iments with the Pytorch toolbox, which provides accelerated
and memory-efficient training with graphics processing units
(GPUs).

A. Evaluation Metrics

1) Energy Calculation: The total computational cost is
proportional to the total number of floating-point operations
(FLOPs), which is similar to the number of matrix-vector
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multiplication operations approximately. For per layer l, the
FLOPs of ANN can be computed by [24]

FLOPsANN(l)

=
{

k2 × O2 × Cin × Cout, if l is the convolutional layer
Cin × Cout, if l is the linear layer

(11)

in which k and O denote the sizes of the kernel function and
output feature map, respectively. In addition, Cin and Cout rep-
resent the input and output channels, respectively. To calculate
the FLOPs of SNN, we define the spiking rate Rs(l) per layer
l since SNN only consumes energy when firing spikes, that is

Rs(l) = #spikes per layer l over all time steps

#neurons per layer l
(12)

which means the average firing rate per neuron. Thus, FLOPS
for SNN is

FLOPsSNN(l) = FLOPsANN(l) × Rs(l). (13)

Therefore, total inference energy consumption for ANN
(EANN) and SNN (ESNN) across all layer is computed as

EANN =
∑

l

FLOPsANN(l) × EMAC (14)

ESNN =
∑

l

FLOPsSNN(l) × EAC (15)

where EAC and EMAC are obtained from a standard 45-nm
complementary metal-oxide-semiconductor (CMOS) process,
viz., EMAC = 4.6 pJ and EAC = 0.9 pJ for 32 bit FP [25].

2) Spike Time Rate:

Spike time rate = #t0
#neurons

(16)

where t0 < t in each time window. Encoding time is the sum
of all t0.

B. Stimulus Data Sets

1) Google Speech Command Data Set v2 [26]: This data
set is composed of 65K 1 s long utterances of 30 short key-
words, by thousands of different people, with each utterance
comprised of only one keyword. We select 10 words out of
30 words in the corpus, which are commonly used commands,
viz., “Yes,” “No,” “Up,” “Down,” “Left,” “Right,” “On,” “Off,”
“Stop,” and “Go.” The remaining 20 commands are “Bed,”
“Bird,” “Dog,” “Cat,” “House,” “Happy,” “Wow,” “Sheila,”
“Marvin,” and “Tree,” and ten numbers from 0 to 9. The data
set is split into training, validation, and test sets with the ratio
of 80% : 10% : 10%, while guaranteeing that the audio utter-
ances from the same person stay in the same set [27]. The
utterances are segmented into frames of 40-ms length with a
stride of 20 ms, leading to the size of input Mel-frequency cep-
stral coefficients (MFCCs) (i.e., features) being 49 × 13. The
features are extracted and concatenated into a spectrogram,
and then encoded via events before inputting to the SNNs for
recognition.

2) MNIST [28] and Caltech101 [29] Data Sets: The
MNIST data set consists of 60K 28×28 grayscale images (i.e.,
handwritten digits 0–9) for training and 10K for testing. The
Caltech101 data set contains 101 categories and each category
has 40–800 300×200 images with complex background noise.
We only evaluate all compared models on face and motor bike
categories, where 200 randomly selected images per category
are used for training and the rest for testing.

3) TIDIGITS [30] and RWCP [31] Data Sets: For the
voice activity detection task, RWCP and TIDIGITS data sets
are utilized. RWCP data set consists of high-fidelity natural
sound samples recorded in the real acoustic environment at
a sampling rate of 16 kHz. We use the same 10 environ-
mental sound classes, including ‘cymbals,” “horn,” “phone4,”
“bells5,” “kara,” “bottle1,” “buzzer,” “metal15,” “whistle1” and
“ring.” We randomly selected 40 samples from each class,
wherein 20 samples are used to train an ANN-based sound
classifier and the rest are used for evaluation. The TIDIGITS
data set comprises of reading digit sequences of variable
lengths from 21 dialectical regions of the United States. We
use the subset of isolated spoken digits from 11 classes (i.e.,
“zero” to “nine” and “oh”), which consists of 2464 train and
2486 test utterances. The utterances are spoken by 111 male
and 114 female speakers at a sampling rate of 20 kHz.

C. Results

1) Comparison With the Linear Latency Coding Approach:
To investigate the efficiency of the proposed nonlinear piece-
wise latency coding method, we combine with SNN and
conduct tests on different data sets, as shown in Table I.
Based on the same architecture, yet with different encoding
approaches, we can see that the proposed coding method is
superior to its counterpart, in terms of accuracy and compu-
tationally complexity. In addition, we observe that the reason
why ours perform better is that ours can emit more important
information, which can be demonstrated by the high spike time
rate.

2) Decision Making on Different Cognitive Tasks: Keyword
spotting is a critical component for enabling speech-based user
interactions on smart devices [33]. For privacy reasons, these
devices rely on the user to preface their commands with a
keyword, such as “Hey Siri” to wake up iPhones [27]. Due
to its always-on nature, keyword spotting application has a
highly constrained power budget and typically runs on tiny
microcontrollers with limited memory and compute capabil-
ity. We compare the proposed system with its competitors
to detect keywords on Google Speech Command data set
v2, as shown in Table II. In [17], a teacher–student training
scheme is applied to approximate the discontinuous nature
in SNN via sharing the weights between ANN and SNN.
Since the errors in SNN do not require to backpropagate
and the spikes are utilized to transmit the information in
ANN, the whole architecture can achieve efficient inference.
Additionally, Masquelier and Thorpe [32] employed the idea
of ANN-to-SNN conversion method, and trained an ANN at
first, then approximated the pretrained ANN with an SNN
equivalent. Although it can achieve comparable performance
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TABLE I
COMPARISON RESULTS AMONG DIFFERENT DATA SETS TO EVALUATE THE EFFECTIVENESS AND EFFICIENCY

OF THE PROPOSED NONLINEAR PIECEWISE LATENCY CODING METHOD

TABLE II
COMPARISON WITH THE EXISTING SNNS IN TERMS OF SPIKE COUNT,

ACCURACY, AND INFERENCE ENERGY RATIO. SC AND ACC DENOTE THE

NUMBER OF SPIKE COUNT AND ACCURACY, RESPECTIVELY. ESNN/EANN
REPRESENTS THE INFERENCE ENERGY RATIO BETWEEN SNN
AND ANN, WHERE THE ENERGY CONSUMPTION OF ANN IS

CONSIDERED AS THE REFERENCE, NAMELY, EANN = 1×

Fig. 6. FRR versus FAR for keyword spotting.

with ours, it is computationally demanding. From Table II,
the proposed method outperforms others with less spike count,
higher accuracy, and efficient computation, and is also more
approaching the deep neural network (DNN) baseline with the
same architecture (multilayer perceptron: 49×13-650-10). As
illustrated in Fig. 6, the false reject rate (FRR) versus false
alarm rate (FAR) is plotted to further evaluate the effectiveness
of the proposed method, where we expect to obtain smaller
values in both FRR and FAR. That means, the smaller values
of FRR and FAR are, the better the classification performance.
The results are consistent with the above analysis.

As an integral part of different speech communication
systems, e.g., speech encoding and echo cancelation, voice
activity detection plays an important role in distinguishing
human voices from background noises. In the context of
speech and speaker recognition, for example, voice activ-
ity detection can avoid unnecessary coding and transmission
of silence packets in Voice over Internet Protocol (VoIP)
applications via discarding the nonspeech section, thereby

TABLE III
RECOGNITION ACCURACIES OF DIFFERENT MODELS ON

THE TIDIGITS DATA SET

TABLE IV
CLASSIFICATION ACCURACIES OF DIFFERENT MODELS

ON THE MNIST DATA SET

saving on computation and network bandwidth. As well,
those noise segments can be extracted for the use of noise
modeling and speech enhancement. Additionally, it is advan-
tageous to have lower average power consumption in mobile
handsets, higher average bit rate for data transmission, or
higher capacity on storage chips. As shown in Table III, the
proposed method presents the best result among all com-
petitors in terms of accuracy up to 94.37%. Herein, unless
otherwise stated, all compared systems employ the same archi-
tecture, that is, convolutional neural network (CNN) with a
size of 20×30-(4C5-P2, 30C7-P4, 100C9-P6)-240-11.4 Here,
we apply multiscale CNN to parallelly connect.

To further verify the proposed method, we conduct an
experiment on the MNIST data set to classify images. From
Table IV, the method in [37] achieves the best result, at an
accuracy up to 98.4%, and followed by ours (97.9%). The
proposed method performs better than other rate-based and
spike-based counterparts.

IV. CONCLUSION

In this work, on the basis of IoT enablement, an
ultralow power always-on intelligent and connected system
is developed, which is based on the deep learning tech-
nique, namely, brain-inspired SNN. Herein, the information

4C and P denote the Convolution and Pooling layers, respectively.
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is represented and exchanged via stereotypical action poten-
tials or spiking events, instead of real values. To that end,
a new nonlinear piecewise latency coding method is devised
to encode stimuli into spike timings, which contributes to
achieving efficient computation. Then, combined with SNN,
the proposed system outperforms the existing competitors for
keyword spotting, voice activity detection, and image clas-
sification, as corroborated by indicative empirical results on
different data sets, respectively.
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