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Low-Rank and Row-Sparse Decomposition for Joint
DOA Estimation and Distorted Sensor Detection

Distorted sensors could occur randomly and may lead to the
breakdown of a sensor array system. In this article, we consider an
array model within which a small number of sensors are distorted by
unknown sensor gain and phase errors. With such an array model, the
problem of joint direction-of-arrival (DOA) estimation and distorted
sensor detection is formulated under the framework of low-rank
and row-sparse decomposition. We derive an iteratively reweighted
least squares (IRLS) algorithm to solve the resulting problem. The
convergence property of the IRLS algorithm is analyzed by means
of the monotonicity and boundedness of the objective function.
Extensive simulations are conducted regarding parameter selection,
convergence speed, computational complexity, and performances
of DOA estimation as well as distorted sensor detection. Even
though the IRLS algorithm is slightly worse than the alternating
direction method of multipliers in detecting the distorted sensors, the
results show that our approach outperforms several state-of-the-art
techniques in terms of convergence speed, computational cost, and
DOA estimation performance.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is one of the
most important topics in array signal processing, which
has found numerous applications in radar, sonar, and wire-
less communications, to name just a few [1], [2], [3].
Many classical approaches have been proposed, including
multiple signal classification (MUSIC) [4], estimation of
signal parameters via rotational invariance techniques [5],
and maximum likelihood methods [6], [7]. However, it is
known that most of these high-resolution algorithms rely
heavily on the exact knowledge of the array manifold, and
hence their performance may greatly suffer when the sensor
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array encounters distortions [8], [9], [10], [11], such as
unknown sensor gain and phase uncertainties, which is
the focus of this work. More recently, techniques based
on low-rank and sparse matrix decomposition have been
applied to DOA estimation or tracking; see e.g., [12], [13],
[14], and [15]. However, these works merely consider the
well-calibrated array, and they are not straightforwardly
applicable to an array with sensor errors. There is a large
number of works devoted to handle distorted or completely
failed sensors [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27]. In [16], the genetic algorithm was
applied for array failure correction. A minimal resource
allocation network was used for DOA estimation under ar-
ray sensor failure [28], which requires a training procedure
with no failed sensors. A Bayesian compressive sensing
approach was proposed in [18], which needs a noise-free
array as a reference. Methods using difference coarray were
developed in [19], [20], and [21]. The idea of [19] was based
on the fact that positions corresponding to damaged sensors
may be occupied by virtual sensors and thus the impact
of sensor failure could be avoided. However, this is not
applicable when the failed sensors are located on the first
or last position of the array, or when the malfunctioned
sensors occur on symmetrical positions of the array, in
which situations there exist holes in the difference coarray.
On the other hand, [20] and [21] restricted the array to
some special sparse structures, such as coprime and nested
arrays. Approaches based on precalibrated sensors have
been well-documented in the past decades [23], [24], [25].
These methods require the knowledge of the calibrated
sensors and they are time- and energy-consuming.

To circumvent the above-mentioned shortcomings, and
to tackle the DOA estimation problem with an array in
which a few sensors are distorted by unknown sensor gain
and phase uncertainties, we formulate the problem under
the framework of low-rank and row-sparse decomposition
(LR2SD), which can be regarded as a special structure
of low-rank and sparse decomposition (LRSD). Note that
LRSD is also known as robust principal component analysis
(RPCA) [29], [30], [31]. The LRSD technique has become
a popular tool in finding a low-dimensional subspace from
sparsely and arbitrarily corrupted observations, and it has
wide applications in science and engineering, ranging from
bioinformatics, web search, to imaging, audio, and video
processing [32], [33], [34], [35]. Another special structure
of LRSD is low-rank and column-sparse decomposition
(LRCSD) [36], [37], [38], [39], [40], also known as RPCA-
outlier pursuit [41], [42], [43], [44], which has been recently
proposed to handle the scenarios where corruptions take
place column-sparsely, meaning that the corruption matrix
is column-wise sparse. Such situations occur, e.g., when
a fraction of the data vectors are grossly corrupted by
outliers [38], [40].

Several algorithms have been contributed to solve
the LRSD and LRCSD problems, such as singular value
thresholding (SVT) [45], accelerated proximal gradient
(APG) [46], alternating direction method of multipliers
(ADMM) [34], [40], and iteratively reweighted least squares

(IRLS) [39], [40], [43], [44]. The SVT, APG, and ADMM
methods will be reviewed in Section III in the context of
joint DOA estimation and distorted sensor detection. The
above three methods require one singular value decompo-
sition (SVD) at each iteration, which may be unbearable
for large scale problems. Instead, IRLS relies on simple
linear algebra, and it generally has a linear convergence
rate [47], [48], [49]. In this sense, the IRLS is more efficient
in solving the corresponding problems. Another related
research direction that uses alternating optimization was
introduced in [50] and [51], where the received data are
approximated in a reduced-dimension space, and an auxil-
iary parameter vector is introduced to construct the output
power spectrum. That is, alternating updates between the
decomposition matrix and auxiliary parameter vector are
performed. Differently, the IRLS algorithm alternates the
low-rank matrix with the row-sparse matrix; see Section IV
for more details.

Therefore, in the present work, we develop an IRLS
algorithm for joint DOA estimation and distorted sensor
detection. The main contributions are as follows.

1) The convergence property of the algorithm is ana-
lyzed, via the monotonicity and boundedness of the
objective function.

2) The computational complexities of the IRLS algo-
rithm as well as the SVT, APG, and ADMM methods
are theoretically analyzed.

3) Extensive simulations are conducted in view of
parameter selection, convergence speed, computa-
tional time, and performance of DOA estimation and
distorted sensor detection.

The rest of this article is organized as follows. The
signal model and problem statement are established in
Section II. A review of state-of-the-art works is provided in
Section III. Section IV derives an IRLS algorithm for joint
DOA estimation and distorted sensor detection. Numerical
results are given in Section V. Finally, Section VI concludes
this article.

Notation: In this article, bold-faced lower-case and
upper-case letters stand for vectors and matrices, respec-
tively. Superscripts ·T and ·H denote transpose and Hermi-
tian transpose, respectively. C is the set of complex num-
bers, and j = √−1. For a real-valued scalar a, |a| denotes
its absolute value. The minimum value of two scalars a
and b is denoted as min{a, b}. ‖ · ‖2 is the �2 norm of a
vector. ‖ · ‖F and ‖ · ‖∗ represent the Frobenius norm and
the nuclear norm (sum of singular values) of a matrix,
respectively. ‖ · ‖2,0 and ‖ · ‖2,1 denote the �2,0 mixed-norm
and �2,1 mixed-norm of a matrix, respectively, whose defi-
nitions are given as ‖V‖2,0 � card({‖Vi,:‖2}) and ‖V‖2,1 �∑M

i=1 ‖Vi,:‖2, for V ∈ C
M×T , where card(·) is the cardi-

nality of a set, {‖Vi,:‖2} = {‖V1,:‖2, ‖V2,:‖2, . . . , ‖VM,:‖2},
and Vi,: is the ith row of V. rank(·) is the rank operator,
defined as rank(Z) � card({σi(Z)}), with σi(Z) being the ith
singular value of Z and {σi(Z)} denoting the set containing
all singular values of Z. For two matrices X and Y of the
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Fig. 1. Illustration of array structure of interest.

same dimensions, we define their Frobenius inner product
as 〈X, Y〉 � trace(XHY), where trace(·) denotes the trace of
a square matrix.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Suppose that a linear antenna array of M sensors
receives K far-field narrowband signals from directions
θ = [θ1, θ2, . . . , θK ]T. The antenna array of interest is as-
sumed to be randomly and sparsely distorted by sensor gain
and phase uncertainty (the number of distorted sensors is
far smaller than M). Further, we assume that the number
of distorted sensors and their positions are unknown. Fig. 1
illustrates the array model, where the green circles stand for
perfect sensors and the red boxes refer to distorted ones. The
red boxes appear randomly and sparsely within the whole
linear array.

The array observation can be written as

y(t ) = �̆As(t )+ n(t ) � (I + �)As(t )+ n(t )

where t = 1, 2, . . . , T denotes the time index, T is the
total number of available snapshots, and s(t ) ∈ C

K and
n(t ) ∈ C

M are signal and noise vectors, respectively. The
steering matrix A = [a(θ1), a(θ2), . . . , a(θK )] ∈ C

M×K has
steering vectors as columns, where the steering vector
a(θk ) is a function of θk , for k = 1, 2, . . . , K . In addition,
�̆ � I + � indicates the electronic sensor status (either
perfect or distorted), where I is the M ×M identity ma-
trix, and � is a diagonal matrix with its main diagonal,
γ = [γ1, γ2, . . . , γM]T, being a sparse vector. Specifically,
for m = 1, 2, . . . , M

γm

{= 0, if the mth sensor is perfect
�= 0, if the mth sensor is distorted.

The nonzero γm denotes sensor gain and phase error,
namely, γm = ρmejφm , where ρm and φm are the gain and
phase errors of the mth sensor, respectively.

Collecting all the snapshots into a matrix, we have

Y = (I + �)AS+ N (1)

where Y = [y(1), y(2), . . . , y(T )] ∈ C
M×T contains the

measurements, S = [s(1), s(2), . . . , s(T )] ∈ C
K×T is the

signal matrix, and N = [n(1), n(2), . . . , n(T )] ∈ C
M×T is

the noise matrix. Defining Z � AS and V � �AS, (1) be-
comes

Y = Z+ V + N (2)

where Z ∈ C
M×T is a low-rank matrix of rank K (in general

K < min{M, T }), and V ∈ C
M×T is a row-sparse (meaning

that only a few rows are nonzero) matrix due to the sparsity
of the main diagonal of �.

Given the array measurements Y, our task is to simul-
taneously estimate the incoming directions of signals and
detect the distorted sensors within the array. Note that the

number of distorted sensors is small, but unknown, and their
positions are unknown as well.

III. RELATED WORKS

Related works for solving the joint DOA estimation and
distorted sensor detection include SVT, APG, and ADMM.
The SVT method was first proposed for matrix completion;
see e.g., [45]. By adapting the SVT algorithm to our prob-
lem, we need to solve

min
Z,V,W

‖Z‖∗ + λ‖V‖2,1 + 1

2τ
‖Z‖2

F

+ 1

2τ
‖V‖2

F +
1

τ
〈W, Y−Z−V〉 (3)

where λ is a tuning parameter, and τ is a large positive scalar
such that the objective function is perturbed slightly. The
SVT approach iteratively updates Z, V, and W. Z and V
are updated by solving the above problem with W fixed.
Then, W is updated as W = Y− Z− V. The following
well-known results are used when updating Z and V [45]:

LSκ (S)RH = arg min
X

κ‖X‖∗ + 1

2
‖X− C‖2

F

Sκ (C) = arg min
X

κ‖X‖2,1 + 1

2
‖X− C‖2

F

where LSRH is the SVD of C and the element-wise soft-
thresholding operator is defined as

Sκ (x) =
⎧⎨
⎩

x − κ, if x > κ

x + κ, if x < κ

0, otherwise

with parameter κ > 0. The applicability of SVT is limited
since it is difficult to select the step size for speedup [34].

The second method is APG, whose updating equation
can be given as [46]

(Zk+1, Vk+1) = arg min
Z,V

h(Z, V) (4)

where subscript ·k denotes the variable at the kth
iteration; h(Z, V) � p(Zk, Vk )+ 〈∇Zk p(Z, Vk );Z− Zk〉
+ 〈∇Vk p(Zk, V), V− Vk〉 + μM‖Z+ V− Zk − Vk‖2

F +
q(Z, V), with p(Z, V) � 1

μ
‖Y− Z− V‖2

F, q(Z, V) �
‖Z‖∗ + λ‖V‖2,1, and μ being a small positive scalar. The
detailed algorithm can be found in [46] and also [34].

As for ADMM, we consider the following problem:

min
Z,V
‖Z‖∗ + λ‖V‖2,1 s.t. Y = Z+ V (5)

and its augmented Lagrangian function is Lμ(Z, V, W) =
‖Z‖∗ + λ‖V‖2,1 + 〈W, Y−Z−V〉 + μ

2 ‖Y−Z−V‖2
F,

where W denotes the dual variable and μ is the augmented
Lagrangian parameter. Then, ADMM updates Z, V, and W,
in a sequential manner. Z and V are solved by minimizing
Lμ(Z, V, W) w.r.t Z (resp. V) while keeping V (resp. Z) and
W unchanged; W is updated as W =W + μ(Y− Z− V)
[52].

All the aforementioned algorithms require performing
one SVD per iteration. Therefore, their computational com-
plexity is extremely high, especially when the problem size
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is large. Their convergence speed and computational cost
will be compared in simulations.

IV. PROPOSED METHOD

In this section, we develop an IRLS algorithm for the
task of jointly estimating DOAs of sources and detecting
distorted sensors. Following the data model in (2), the
problem to be solved can be given as

min
Z,V

1

2
‖Y−Z−V‖2

F + λ1‖Z‖∗ + λ2‖V‖2,1 (6)

where λ1 and λ2 are two tuning parameters. To handle the
nonsmoothness of the nuclear norm and the �2,1 mixed-
norm, we introduce a smoothing parameter μ. That is,
Problem (6) is transferred to

min
Z,V

f (Z, V) (7)

with f (Z,V)� 1
2‖Y−Z−V‖2

F+λ1‖[Z,μI]‖∗+λ2‖[V,μ1]‖2,1,
where 1 is an all-ones vector of appropriate length. The
derivatives of f (Z, V) w.r.t. Z and V are

∂ f (Z, V)

∂Z
= (−Y + Z+ V)+ λ1PZ

∂ f (Z, V)

∂V
= (−Y + Z+ V)+ λ2QV

respectively, where P �
(
ZZH + μ2I

)− 1
2 and

Q �

⎡
⎢⎢⎣

1√
‖V1,:‖2

2+μ2

. . .
1√

‖VM,:‖2
2+μ2

⎤
⎥⎥⎦. (8)

According to the Karush–Kuhn–Tucker (KKT) condi-
tion, we have {

(I + λ1P)Z− Y + V = 0
(I + λ2Q)V− Y + Z = 0

which leads to the IRLS procedure as{
Zk+1 = (I + λ1Pk )−1(Y− Vk )
Vk+1= (I + λ2Qk )−1(Y− Zk+1)

(9)

where Pk and Qk depend on Zk and Vk , respectively.
The IRLS algorithm is summarized in Algorithm 1. The
algorithm is based on alternating optimization, and it is
terminated when a stopping condition is reached.

A. Convergence Analysis for IRLS

In this part, the monotonicity and boundedness of the
objective function f (Z, V) in (7) are proved in Theorems 1
and 2, respectively.

THEOREM 1 The IRLS procedure (9) produces a nonin-
creasing objective function defined in (7), i.e., f (Zk, Vk ) ≥
f (Zk+1, Vk+1) for k = 0, 1, 2, · · · . Besides, the sequence
{(Zk, Vk )} is bounded, and limk→∞ ‖Zk − Zk+1‖F = 0 and
limk→∞ ‖Vk − Vk+1‖F = 0.

PROOF See Appendix A1. �

Algorithm 1: IRLS Algorithm for Solving Problem
(7).

Input : Y ∈ C
M×T , λ1, λ2, μ, ε, kmax

Output : Ẑ ∈ C
M×T , V̂ ∈ C

M×T

Initialize: Z0 ← Zinit, V0 ← Vinit, k← 0
1: while not converged do
2: k← k + 1
3: calculate Pk and Qk

4: update Zk using Z = (I + λ1P)−1(Y− V)
5: update Vk using V = (I + λ2Q)−1(Y− Z)

6: converged←
{

k ≥ kmax or
| f (Zk ,Vk )− f (Zk−1,Vk−1 )|

| f (Zk ,Vk )| ≤ ε

7: end while
8: Ẑ← Zk , V̂← Vk

THEOREM 2 The objective function f (Z,V) defined in (7)
is bounded below by |μ|(λ1

√
M + λ2M ).

PROOF See Appendix A2. �

THEOREM 3 Any limit point of the sequence {(Zk, Vk )}
generated by (9) is a stationary point of Problem (7), and
moreover, the stationary point is globally optimal.

PROOF See Appendix A3. �

REMARK The differences between our work and [39] are
stated as follows.

1) The problem formulation in [39] is column-sparse,
while we have row-sparsity of V. This leads to differ-
ences in matrix multiplication and matrix derivative.

2) The authors in[39] consider the noiseless case. We
consider the noisy case, which is more practical.

3) To update Z using matrices P and Q, the approach
in [39] involves a Sylvester equation and utilizes the
MATLAB command lyap. However, our method
admits a closed-form formula; see (9).

4) The proofs of convergence are not exactly the same.
The authors in [39] prove the monotonicity of the
objective and the boundedness of the sequence {Zk}.
We prove the monotonicity and the boundedness of
the objective, and we also show the boundedness of
{(Zk, Vk )}.

B. DOA Estimation and Distorted Sensor Detection

Once Ẑ and V̂ are resolved, they can be adopted to
estimate the DOAs and detect the distorted sensors, respec-
tively. Note that Z = AS can be viewed as a noise-free data
model. DOAs can be found via subspace-based methods,
such as MUSIC, whose spatial spectrum is calculated as

P(θ ) = 1

aH(θ )(I− LLH)a(θ )
.

The SVD of Ẑ is Ẑ = L�RH, where the columns of L
and R contain the left and right orthogonal base vectors of
Ẑ, respectively, and � is a diagonal matrix whose diagonal
elements are the singular values of Ẑ arranged in descending
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Algorithm 2: Detection of Distorted Sensors.

Input : V̂ ∈ C
M×T , h

Output: Mfail

calculate v = [‖V̂1,:‖2, ‖V̂2,:‖2, . . . , ‖V̂M,:‖2

]T

calculate ṽ = sort(v, ‘ascend’)
calculate d = ṽ(2)− ṽ(1) and assign ifail = M + 1

1: for i = 3, 4, . . . , M do
2: if ṽ(i)− ṽ(i − 1) ≥ h then
3: ifail = i and break the for loop
4: end if
5: end for
6: Mfail ← M−ifail + 1

Fig. 2. RMSE versus μ, with M = 10 sensors (four of which fail),
K = 2 sources, λ1 = 2, and λ2 = 0.2.

order. Under the assumption that the number of sources, i.e.,
K , is known, the DOAs are determined by searching for the
K largest peaks of P(θ ).

On the other hand, the number of distorted sensors
and their positions can be determined by ‖V̂i,:‖2, i =
1, 2, . . . , M. Algorithm 2 shows a strategy for detecting
the distorted sensors. In words, we first calculate the �2

norm of each row of V̂ and form a vector, say v, and then
we sort these �2 norms in ascending order and obtain ṽ.
We define the difference of the first two entries of ṽ as
d = ṽ(2)− ṽ(1). Next, for i = 3, 4, . . . , M, we compute
ṽ(i)− ṽ(i − 1) and compare it with a threshold, say h,
of large value: If it is larger than or equal to h, we set
ifail = i and break the for loop; if it is less than h, we have
ifail = M + 1. Finally, the number of distorted sensors is
obtained as Mfail = M − ifail + 1.

Analysis of the maximal number of distorted sensors
to be detected by the IRLS algorithm is left as an open
question. Related work can be found in [36].

V. SIMULATIONS

A. Parameter Selection

In this subsection, we discuss the problem of choosing
appropriate values for μ, λ1, and λ2 in Problem (7) used in
the IRLS algorithm. We set ε = 10−16, kmax = 1000, and
Zinit = Vinit = O, where O denotes the M × T all-zeros

Fig. 3. RMSE versus λ1 and λ2, with M = 10 sensors (four of which
fail), K = 2 sources, T = 100 snapshots, SNR = 0 dB, and μ = 0.01.

Fig. 4. Computational complexity versus number of snapshots.

Fig. 5. Computational complexity versus number of sensors.

matrix. We define the root-mean squared error (RMSE) of

DOA estimates as: RMSE =
√

1
QK

∑Q
q=1

∑K
k=1(θ̂k,q − θk )2,

where θ̂k,q is the estimate of the kth signal in the qth Monte
Carlo trial, and Q is the total number of Monte Carlo trials.
The rmse is used as a metric to select appropriate values for
μ, λ1, and λ2. The plots in this subsection are averaged over
Q = 1000 trials.

Consider a uniform linear array (ULA) of M = 10
sensors, four of which at random positions are distorted by
gain and phase errors, receiving K = 2 signals with DOAs
θ = [−10◦, 10◦]T. The sensor gain and phase errors are
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Fig. 6. rmse versus SNR.

TABLE I
Comparison of Objective Function Value, CPU Time, and

Number of Iterations in Two Different Settings

randomly generated by drawing from uniform distributions
on [0, 10] and [−15◦, 15◦], respectively. In the first example,
we test six scenarios with different signal-to-noise ratios
(SNRs) and different numbers of snapshots. In Fig. 2, we fix
λ1 = 2 andλ2 = 0.2, and plot RMSE versusμ. In the second
example, we examine rmse versus the tuning parameters λ1

and λ2 with μ = 0.01, SNR= 0 dB, and T = 100 snapshots.
The result is drawn in Fig. 3.

We observe from Fig. 2 that the RMSE remains un-
changed and stays minimal when μ lies within the interval
[10−13, 100] for all six tested scenarios. Hence, we can
choose any value for μ within this interval. Since the interval
covers such a large range, the IRLS algorithm is insensitive
to μ. Note that in Fig. 3, our goal is to find a pair of
(λ1, λ2) such that it is minimized. This demonstrates that
there are many pairs of (λ1, λ2) meeting such a condition,
such as (λ1, λ2) = (2, 0.2), which is used for the IRLS in
the following simulations.

B. Convergence Speed

We compare the convergence speed of the IRLS with
several existing methods, i.e., SVT, APG, and ADMM.
Considering again a ULA of M = 10 sensors, four of which
at random positions are distorted, receives K = 2 signals
from−10◦ and 10◦. The objective function value, CPU time,
and number of iterations are tabulated in Table I (upper) for
SNR= 0 dB and T = 100 snapshots, and Table I (lower) for

TABLE II
Computational Complexity

Fig. 7. Resolution probability versus SNR.

Fig. 8. rmse versus number of snapshots.

SNR = 0 dB and T = 500 snapshots. In both settings, the
IRLS algorithm has the smallest objective function value,
the least CPU time, and the least number of iterations,
among all the examined algorithms.

C. Computational Complexity

We compare the computational complexity in this sub-
section. Note that the SVT, APG, and ADMM algorithms
require one SVD of an M×T matrix per iteration, and
the SVD consumes the most CPU time. As for the IRLS
algorithm, the main calculation is to find the inverse of an
M×M matrix per iteration. Their main computational cost
is summarized in Table II, where Ksvt, Kapg, Kadmm, and Kirls

denote the numbers of iterations for the SVT, APG, ADMM,
and IRLS algorithms, respectively.

Fig. 4 plots the averaged CPU time against the number
of snapshots at M = 10 sensors (four of which distorted),
K = 2 sources, SNR = 0 dB, and Q = 1000 Monte Carlo
runs. It is seen that the CPU times of the SVT, APG, and
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Fig. 9. Resolution probability versus number of snapshots.

Fig. 10. RMSE versus source separation angle.

ADMM1 algorithms are nearly linearly increasing with T .
This is consistent with the theoretical analysis in Table II.
Fig. 5 displays the CPU time versus the number of sensors
with T = 100 snapshots and the other parameters are the
same as those in Fig. 4. We see that the curves of the
CPU time of the SVT, APG, and ADMM algorithms are
approximately linearly correlated to M in a log scale, which
again matches the theoretical calculations.

D. DOA Estimation Performance

We use the rmse and resolution probability as DOA es-
timation performance measures. The resolution probability
is calculated by Nsucc/Q, where Q is the number of Monte
Carlo runs, and Nsucc denotes the number of trials where all
the DOAs are successfully estimated. The trial is counted
as a successful one if the following inequality is satisfied:
maxk{|θ̂k − θk|} ≤ 0.5◦.

In the first example, we consider a ULA of M = 10
sensors, three of which at random positions are distorted,
K = 2 signals from−10◦ and 10◦, T = 100 snapshots, and
Q = 5000 Monte Carlo trials. The rmse and resolution
probability are depicted in Figs. 6 and 7, respectively.

1Note that there is a jump of ADMM at T = 250. This is caused by the
rapid increment of its number of iterations Kadmm.

Fig. 11. Resolution probability versus source separation angle.

Fig. 12. Success detection rate versus SNR.

The traditional Cramér–Rao bound with known sensor er-
rors [53] is plotted as a benchmark. Note that the curve
labelled as “MUSIC-Known” denotes the MUSIC method
with exact knowledge of the distorted sensors. It is seen
that the SVT and MUSIC have bad performance even when
the SNR becomes large. The APG, ADMM, and IRLS
algorithms perform well when the SNR increases, their
rmses decrease and their resolution probabilities increase
up to 1. The IRLS algorithm outperforms the other two
state-of-the-art methods, i.e., APG and ADMM.

In the next example, we examine the DOA estimation
performance for different numbers of snapshots. The SNR
is set to be 0 dB, and the remaining parameters are the same
as those of the former example. The RMSE and resolution
probability of the methods are plotted in Figs. 8 and 9,
respectively. The results demonstrate a better performance
of the IRLS algorithm compared with the SVT, APG, and
ADMM methods.

In the last example of this subsection, we evaluate the
DOA estimation performance in view of the source sepa-
ration angle. The settings of SNR = 0 dB, K = 2 sources,
and T = 100 snapshots are employed. The first signal is
from 0◦, while the DOA of the second signal changes from
1◦ to 20◦ with a stepsize of 1◦. The other parameters are
unchanged as those in the first example of this subsec-
tion. The rmse and resolution probability versus angular
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Fig. 13. Success detection rate versus number of snapshots.

Fig. 14. Success detection rate versus source separation angle.

separation are displayed in Figs. 10 and 11, respectively.
These again indicate that the IRLS algorithm outperforms
the SVT, APG, and ADMM algorithms in terms of rmse
and resolution probability.

E. Distorted Sensor Detection Performance

Parallel to the three examples in Section V-D, we now
examine the performance of the detection of distorted sen-
sors of the SVT, APG, ADMM, and IRLS algorithms. The
threshold in Algorithm 2 is set as h = 10 d . We utilize
the success detection rate as a metric, which is defined as
Ndetec/Q. Ndetec is the number of trials where the number
of distorted sensors is correctly estimated, and meanwhile
their positions are exactly found. The results are given in
Figs. 12, 13, and 14, which show that the ADMM is the
best amongst all tested methods in terms of identifying the
distorted sensors, followed by the IRLS algorithm.

VI. CONCLUSION

In this article, we studied the problem of simultaneously
estimating DOA of signals and detecting distorted sensors.
It is assumed that the distorted sensors occur randomly,
and the number of distorted sensors is much smaller than
the total number of sensors. The problem was formulated
via (LR2SD), and solved by IRLS. Theoretical analyses of
algorithm convergence were provided. Computational cost

of the IRLS algorithm was compared with that of several
existing methods. Simulation results were conducted for pa-
rameter selection, convergence speed, computational time,
and performance of DOA estimation as well as distorted
sensor detection. The IRLS method was demonstrated to
have higher DOA estimate accuracy and lower computa-
tional cost than other methods, and the alternating direction
method of multipliers was shown to be slightly better than
the IRLS algorithm in distorted sensor detection.

APPENDIX A

A. Proof of Theorem 1

We first have the following two lemmata:

LEMMA 1 (LEMMA 1 IN [39]) For any matrices
X and Y ∈ C

M×T , we have ‖Y‖2,1 − ‖X‖2,1 ≥
1
2 trace

(
H(YYH − XXH)

)
, where H is a diagonal matrix

with main diagonal [1/‖Y1,:‖2, . . . , 1/‖YM,:‖2].

LEMMA 2 (LEMMA 2 IN [39]) For any two symmetric pos-

itive definite matrices X and Y, it holds that trace
(

Y
1
2

)
−

trace
(

X
1
2

)
≥ trace

(
1
2 (Y− X)HY−

1
2

)
.

Then, we calculate the difference between the objective
function values at two successive iterations as

f (Zk, Vk )− f (Zk+1, Vk+1)

= 1

2
‖Y−Zk−Vk‖2

F −
1

2
‖Y−Zk+1−Vk+1‖2

F

+ λ1‖[Zk, μI]‖∗ − λ1‖[Zk+1, μI]‖∗
+ λ2‖[Vk, μ1]‖2,1 − λ2‖[Vk+1, μ1]‖2,1

≥ 1

2
‖Y−Zk−Vk‖2

F −
1

2
‖Y−Zk+1−Vk+1‖2

F

+ λ1trace

(
1

2

(
ZkZH

k − Zk+1ZH
k+1

)
Pk

)

+ λ2

2
trace

(
Qk

(
VkVH

k − Vk+1VH
k+1

))
= 1

2
‖Y−Zk−Vk‖2

F −
1

2
‖Y−Zk+1−Vk+1‖2

F

+ λ1trace

(
1

2

(
Zk − Zk+1

) (
Zk − Zk+1

)H
Pk

)
+ λ1trace

((
Zk − Zk+1

)
ZH

k+1Pk
)

+ λ2

2
trace

(
Qk

(
Vk − Vk+1

) (
Vk − Vk+1

)H
)

+ λ2trace
(
Qk (Vk − Vk+1)VH

k+1

)
≥ 1

2
trace

(
(Zk − Zk+1)(Zk − Zk+1)H

+ (Vk − Vk+1)(Vk − Vk+1)H)
+ trace

(
(−Y + Zk+1)(Zk − Zk+1)H

+ (−Y + Vk+1)(Vk − Vk+1)H

+ZkVH
k − Zk+1VH

k+1

)
+ λ1trace

((
Zk − Zk+1

)
ZH

k+1Pk
)

+ λ2trace
(
Qk (Vk − Vk+1)VH

k+1

)
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= 1

2
trace

(
(Zk − Zk+1)(Zk − Zk+1)H

+ (Vk − Vk+1)(Vk − Vk+1)H
)

+ trace
(
ZkVH

k − Zk+1VH
k+1

)
+ trace

(−Vk (Zk − Zk+1)H)
+ trace

(−Zk (Vk − Vk+1)H
)

= 1

2
trace

(
(Zk − Zk+1)(Zk − Zk+1)H

+ (Vk − Vk+1)(Vk − Vk+1)H)
+ trace

(
(Zk − Zk+1)(Vk+1 − Vk )H

)
= 1

2
trace

(
(Zk − Zk+1 − Vk + Vk+1)·

(Zk − Zk+1 − Vk + Vk+1)H)
= 1

2
‖Zk − Zk+1 − Vk + Vk+1‖2

F ≥ 0 (10)

which indicates that f (Z, V) is a nonincreasing function.
Since f (Z, V) is nonincreasing, we have

min{λ1, λ2}
(‖[Zk, μI]‖∗ + ‖[Vk, μ1]‖2,1

)
≤ λ1‖[Zk, μI]‖∗ + λ2‖[Vk, μ1]‖2,1

≤ f (Zk, Vk ) ≤ f (Z0, V0).

Hence, ‖Zk‖∗ + ‖Vk‖2,1 < ‖[Zk, μI]‖∗ + ‖[Vk, μ1]‖2,1

≤ f (Z0,V0 )
min{λ1,λ2} , which shows that {(Zk, Vk )} is bounded.
Besides, combining (9) and (10) yields

f (Zk, Vk )− f (Zk+1, Vk+1)

≥ λ1

2
trace

((
Zk − Zk+1

) (
Zk − Zk+1

)H
Pk

)
+ λ2

2
trace

(
Qk

(
Vk − Vk+1

) (
Vk − Vk+1

)H
)

+ 1

2
trace

(
(Zk − Zk+1)(Zk − Zk+1)H

)
≥ λ1

2
trace

((
Zk − Zk+1

) (
Zk − Zk+1

)H
Pk

)
+ λ2

2
trace

(
Qk

(
Vk − Vk+1

) (
Vk − Vk+1

)H
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≥ λ1

2

M∑
i

ζi (Pk ) ζM−i+1
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Zk−Zk+1

) (
Zk−Zk+1

)H
)

+ λ2

2

M∑
i

ζi (Qk ) ζM−i+1
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Vk−Vk+1

) (
Vk−Vk+1
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≥ λ1

2
ζ

(P)
min × ‖Zk−Zk+1‖2

F +
λ1

2
ζ

(Q)
min × ‖Vk−Vk+1‖2

F

where ζ
(P)
min and ζ

(Q)
min are the smallest eigenvalues of Pk

and Qk , respectively, over all k. Summing all the above
inequalities for all k ≥ 0, we have

f (Z0, V0) ≥ λ1

2
ζ

(P)
min

∞∑
k=0

‖Zk − Zk+1‖2
F

+ λ2

2
ζ

(Q)
min

∞∑
k=0

‖Vk − Vk+1‖2
F

which implies that limk→∞ ‖Zk − Zk+1‖F = 0 and
limk→∞ ‖Vk − Vk+1‖F = 0.

B. Proof of Theorem 2

For any matrices Z and V ∈ C
M×T , we have

‖[V, μ1]‖2,1 =
M∑

i=1

√
‖Vi,:‖2

2 + μ2 ≥
M∑

i=1

|μ| = |μ|M

‖[Z, μI]‖∗ = trace
((

ZZH + μ2I
) 1

2

)
≥ (

trace
(
ZZH + μ2I

)) 1
2

= (
trace

(
ZZH

)+Mμ2
) 1

2

≥ (
Mμ2

) 1
2 = |μ|

√
M. (11)

Inequality (11) holds because trace
(

X
1
2

)
=∑

i

√
ζi ≥√∑

i ζi = (trace(X))
1
2 for any symmetric matrix X,

with ζi being the eigenvalue of X. Considering the
above two inequalities and ‖Y− Z− V‖2

F ≥ 0, we can
prove that the objective function in (7) is bounded
below as f (Z, V) = 1

2‖Y−Z−V‖2
F + λ1‖[Z, μI]‖∗ +

λ2‖[V, μ1]‖2,1 ≥ |μ|(λ1

√
M + λ2M ).

C. Proof of Theorem 3

Denote the limit point of the sequence {(Zk, Vk )} as
(Zk+1, Vk+1). Then, according to limk→∞ ‖Zk − Zk+1‖F =
0 and limk→∞ ‖Vk − Vk+1‖F = 0 in Theorem 1 and (9), we
have {

Zk+1 = (I + λ1Pk+1)−1(Y− Vk+1)
Vk+1= (I + λ2Qk+1)−1(Y− Zk+1)

which is the KKT condition of Problem (7). Since Problem
(7) is convex w.r.t. Z and V, the stationary point is globally
optimal.
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