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Fast Robust Matrix Completion via Entry-Wise
�0-Norm Minimization
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Abstract—Matrix completion (MC) aims at recovering missing
entries, given an incomplete matrix. Existing algorithms for MC
are mainly designed for noiseless or Gaussian noise scenarios
and, thus, they are not robust to impulsive noise. For outlier
resistance, entry-wise �p-norm with 0 < p < 2 and M-estimation
are two popular approaches. Yet the optimum selection of p for
the entrywise �p-norm-based methods is still an open problem.
Besides, M-estimation is limited by a breakdown point, that is,
the largest proportion of outliers. In this article, we adopt entry-
wise �0-norm, namely, the number of nonzero entries in a matrix,
to separate anomalies from the observed matrix. Prior to sepa-
ration, the Laplacian kernel is exploited for outlier detection,
which provides a strategy to automatically update the entry-
wise �0-norm penalty parameter. The resultant multivariable
optimization problem is addressed by block coordinate descent
(BCD), yielding �0-BCD and �0-BCD-F. The former detects and
separates outliers, as well as its convergence is guaranteed. In
contrast, the latter attempts to treat outlier-contaminated ele-
ments as missing entries, which leads to higher computational
efficiency. Making use of majorization–minimization (MM), we
further propose �0-BCD-MM and �0-BCD-MM-F for robust non-
negative MC where the nonnegativity constraint is handled by
a closed-form update. Experimental results of image inpainting
and hyperspectral image recovery demonstrate that the suggested
algorithms outperform several state-of-the-art methods in terms
of recovery accuracy and computational efficiency.

Index Terms—�0-norm optimization, matrix completion (MC),
non-negative MC (NMC), outlier detection, robust recovery.

I. INTRODUCTION

MATRIX completion (MC) refers to restoring the miss-
ing entries of an incomplete matrix by making use of

the low-rank property, and has various applications, including
machine learning [1], system identification [2], computer
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vision [3], image inpainting [4], and target estimation [5].
This is because many real-world signals can be repre-
sented/approximated as low-rank matrices. For instance, image
data can be modeled as low-rank matrices since the main
information is dominated by the largest singular values, asso-
ciating with their left and right singular vectors [6].

Mathematically, MC is formulated as a constrained rank
minimization problem [7]. Unfortunately, it is NP-hard as the
rank function is both nonconvex and discrete. The nuclear
norm has been proved to be a convex envelop of the rank
function [8] and, hence, can be used as its substitute. MC
based on the nuclear norm has been handled by singular-value
thresholding (SVT) [9], fixed-point continuation (FPC) [10],
accelerated proximal gradient (APG) [11] and truncated
nuclear norm regularization (TNNR) [12]. As singular-value
decomposition (SVD) is required, the aforementioned meth-
ods are computationally demanding, especially for large-size
matrices.

On the other hand, the nuclear norm, which is equal to the
sum of all singular values, may cause the solution to deviate
seriously from the ground truth because of its slack relax-
ation. To handle this issue, a weighted nuclear norm method
(WNNM) [13] assigns different weights to the singular val-
ues. Besides, the capped trace norm and Schatten p-norm are
suggested to approximate the rank function [14], [15], [16].
Although these two norms have a better rank function approx-
imation, they also require SVD computation. Another way to
avoid the slack relaxation is to convert the rank minimization
into a rank constraint [17] and then use gradient projection to
handle the resultant problem. Since only the truncated SVD
is involved, its computational complexity is lower than those
implementing full SVD.

To avoid SVD computation, matrix factorization scheme
has been suggested for MC [18]. The basic idea is to exploit
the product of two much smaller matrices to represent the
objective matrix under the assumption that the rank of tar-
get matrix is known. Low-rank matrix fitting (LMaFit) [19]
is first proposed using matrix factorization, but its global
convergence cannot be ensured. Subsequently, MC based
on low-rank factorization is proved to obtain the globally
optimal solution under some mild conditions [20]. Moreover,
locally linear approximation (LLA) [21] adopts the local
structure of visual data for recovery performance improve-
ment. Recently, the online robust MC (ORMC) method [22]
considers the incomplete matrix containing several Gaussian
noise-contaminated columns and adopts �2,1-norm as the loss
function.
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The above-mentioned algorithms can work well when the
observed matrix is noise-free or corrupted by white Gaussian
noise. Although Gaussian distribution is the best approxima-
tion to common noise, non-Gaussian distributed noise has
occurred in some fields [23]. For instance, images may be
corrupted by salt-and-pepper noise, and communication chan-
nels may contain impulsive components. To resist outliers,
the entrywise �p-norm with 0 < p < 2 has been adopted
as the loss function, resulting in the alternating projection
(AP) [24], �p regression (�p-reg) [25], and �p-norm-based
matching pursuit (�p-MP) [26]. These approaches demon-
strate outstanding performance in the presence of gross errors.
However, the entrywise �p-norm has two open problems.
The first is how to select the optimum p for the impul-
sive noise of a certain intensity since the choice of p affects
the recovery performance. The second is that the entrywise
�p-norm with 0 < p < 1 is nonsmooth and nonconvex,
which poses a challenge for optimization. Besides, the works
in [27] and [28] suggest adopting the M-estimators to deal with
robust MC (RMC). Nevertheless, M-estimation has a break-
down point that depends on the largest proportion of anoma-
lies [29]. Moreover, the Bayesian approach has been exploited
to solve RMC, which includes the Bayesian estimator for
noisy MC (BENMC) [30] and variational Bayesian matrix fac-
torization based on �1-norm (VBMFL1) [31]. Recently, the
correntropy-induced loss function and �1-norm formulated as
a regularization term are applied for RMC [32], [33].

In applications, such as blind recommender systems [34],
sensor calibration [35], and hyperspectral imaging [36], [37],
data are non-negative. However, MC methods may result in
negative entries in the recovered matrix, which violates the
inherent data property. To handle this issue, non-negative
MC(NMC) approaches are proposed, including matrix fac-
torization with alternating direction method of multipliers
(MF-ADMMs) [38], low-rank approximation with ADMM
(LRA-ADMM) [39], and NMC using Nesterov iterations
(NeNMCs) [40]. Compared with MC, NMC ensures that all
entries of the recovered matrix are non-negative. However,
most existing NMC algorithms are not robust to outliers.

In this article, we exploit the entrywise �0-norm, which is
equal to the number of nonzero entries, to separate anomalies
from the observed matrix. In addition, we combine the entrywise
�0-norm with the matrix factorization strategy to formulate the
RMC problem. Then, block coordinate descent (BCD) [41] is
adopted as the solver for the resultant multivariable optimization
problem. The developed algorithms, called �0-BCD and �0-
BCD-F, update one block with fixing the remaining blocks
at each iteration. The former detects and separates outliers
from the noisy matrix, while the latter considers the outlier-
contaminated elements as missing entries. Therefore, the �0-
BCD-F has lower computational complexity than the �0-BCD.
To detect outliers, Laplacian kernel is exploited, resulting in
an adaptive method to update the penalty parameter of the �0-
norm. On the other hand, the above scheme is applied to deal
with robust NMC (RNMC), yielding two algorithms, namely:
1) �0-BCD-MM and 2) �0-BCD-MM-F. They use majorization–
minimization (MM) to handle the least squares problem with the
nonnegativity constraint. Unlike the projected gradient descent

whose convergence depends on an appropriate choice of step
size, the �0-BCD-MM and �0-BCD-MM-F provide a closed-
form update without this parameter. Our main contributions
are summarized as.

1) The entrywise �0-norm is formulated as a penalty term
to separate anomalies. In addition, the Laplacian kernel
function is exploited to devise an outlier detector for
identifying anomalies, by which the penalty parameter
of the �0-norm is automatically updated. The proposed
algorithms achieve a higher recovery accuracy than
existing approaches for synthetic and real-world data in
the presence of outliers.

2) A novel perspective is suggested to address RMC, that
is, outlier-contaminated entries are considered as miss-
ing elements. This reduces the algorithm computational
requirement, resulting in a faster variant, namely, �0-
BCD-F. Its computational efficiency is much higher than
the existing techniques.

3) To tackle the non-negative least squares problem in
RNMC, we adopt MM to develop a closed-form update
which is proved to meet the Karush–Kuhn–Tucker
(KKT) conditions. Compared with the projected gra-
dient descent that requires an appropriate value of
step-size [42], our algorithm is parameter-free.

The remainder of this article is organized as follows. In
Section II, we introduce notations and preliminaries, including
problem formulation and representative solvers. Two efficient
algorithms for RMC, that is: 1) �0-BCD and 2) �0-BCD-F,
are developed in Section III. In Section IV, we propose �0-
BCD-MM and �0-BCD-MM-F to tackle RNMC. Numerical
results based on synthetic and real-world data are presented
in Section V. Finally, Section VI provides concluding remarks.

II. OVERVIEW OF RELATED WORK

A. Notations

Scalars, vectors, and matrices are represented by italic, bold
lowercase, and bold uppercase letters, respectively. Besides,
a matrix of ones is signified by 111. For matrices, ‖·‖∗ is the

nuclear norm while ‖AAA‖F =
√∑m

i=1
∑n

j=1 a2
i,j is the Frobenius

norm where ai,j is the (i, j) entry of AAA ∈ R
m×n. ‖AAA‖p

p with 0 <

p < 2 is calculated using the sum of p power of all elements.
The elementwise absolute operation of AAA is represented by
|AAA|. Moreover, AAA ≥ 0 and AAA � 0 signify that AAA is a non-
negative matrix and positive semidefinite matrix, respectively.
Furthermore, aaaT

i is the ith row of AAA, while aaaj is the jth column

of AAA. For a vector aaa ∈ R
m, ‖aaa‖2 =

√∑m
i=1 a2

i and ‖aaa‖1 =∑m
i=1 |ai| are �2-norm and �1-norm, respectively. In addition,

dim(aaa) indicates the length of aaa. The entrywise �0-norm for
vectors and matrices is denoted by ‖·‖0 which is the total
number of nonzero entries. The pseudo-inverse and transpose
operators are signified by (·)† and (·)T, respectively.

B. Matrix Completion Formulation

Consider an incomplete matrix XXX��� ∈ R
m×n where ��� ∈

R
m×n is a binary matrix, consisting of 0 and 1. Here, XXX���
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denotes that XXX projects onto ���, resulting in

(XXX���)i,j =
{

xi,j, if �i,j = 1
0, otherwise.

(1)

Ideally, the MC problem is formulated as a rank minimization
problem [7]

min
MMM

rank(MMM) s.t. XXX��� = MMM���. (2)

It means that MC aims at seeking MMM ∈ R
m×n with minimum

rank under the constraint where the entries of the recovered
and observed matrices in ��� are equal. Yet rank minimization
is an NP-hard problem. One popular and feasible method is
to adopt matrix factorization [19], leading to

min
UUU,VVV

‖(UUUVVV)��� − XXX���‖2
F (3)

where the recovered matrix is represented by the product of
two low-dimensional matrices, namely, UUU ∈ R

m×r and VVV ∈
R

r×n. Herein, r is the rank of the recovered matrix. Since (3)
does not require computing SVD, it has lower computational
complexity compared to the nuclear norm-based algorithms.
However, its performance will be degraded when the observed
entries involve gross errors. The reason is that the Frobenius
norm amplifies the power of outliers which is much larger than
that of the Gaussian noise.

One of the prevailing approaches to resist outliers is to use
the entrywise �p-norm with 0 < p < 2 [25]

min
UUU,VVV

‖(UUUVVV)��� − XXX���‖p
p. (4)

Consider a residual e = (UUUVVV)i,j − xi,j corresponding to an
outlier, we obtain |e|p < |e|2 with 0 < p < 2. That is, the
entrywise �p-norm is able to weaken the impact of outliers
and, thus, the entrywise �p-norm has a better performance than
the Frobenius norm in an impulsive noise environment.

Another approach for RMC is based on the maximum
correntropy criterion [32]

min
UUU,VVV

‖(UUUVVV)��� − XXX���‖Gσ (5)

where ‖·‖Gσ is the correntropy-induced loss function,
defined as

‖AAA‖Gσ =
m∑

i=1

n∑
j=1

σ 2

(
1 − exp

(
− a2

i,j

2σ 2

))
(6)

where σ > 0 is the kernel width. Since solving (5) requires
a three-layer iterative procedure, the resultant algorithm has
relatively high computational complexity.

In addition, the entrywise �0-norm has been applied for
RMC [43], resulting in

min
MMM,EEE

‖MMM��� − XXX��� + EEE���‖2
F + α

2
‖MMM�̃��‖2

F

s.t. ‖EEE‖0 ≤ N0, ‖EEE‖2 ≤ KE, rank(MMM) ≤ r (7)

where α > 0 is a penalty parameter, �̃�� is a subset of ���

and does not contain the indices of the outlier-contaminated
entries, N0 is a positive integer to limit the number of out-
liers, and KE is a finite constant to facilitate the convergence.

However, the method to solve (7) is computationally expen-
sive since it requires performing SVD. Besides, the number
of anomalies should be estimated in advance, which is a
challenge for real-world data.

C. Non-Negative Matrix Completion Formulation

Analogous to MC, NMC can be formulated as [38] and [39]

min
UUU,VVV

‖(UUUVVV)��� − XXX���‖2
F, s.t. UUU ≥ 0,VVV ≥ 0 (8)

where UUU ≥ 0 and VVV ≥ 0 ensure the recovered matrix non-
negative. In this work, we develop a method to solve the
nonnegativity constraint of RNMC. Prior to introducing our
idea, two existing approaches are first reviewed. To facilitate
presentation, we assume that ��� = 111 in (8). In this way, we can
obtain a special case of RNMC, that is, non-negative low-rank
matrix approximation.

The most famous method for non-negative matrix factoriza-
tion is the multiplicative update [44]

uk+1
i,j = uk

i,j

(
XXX���

(
VVVk

)T
)

i,j(
UUUkVVVk

(
VVVk

)T
)

i,j

(9a)

vk+1
i,j = vk

i,j

((
UUUk+1

)T
XXX���

)
i,j((

UUUk+1
)T

UUUk+1VVVk
)

i,j

. (9b)

Note that the solution to (9) is UUU > 0 and VVV > 0
which is not strictly equivalent to UUU ≥ 0 and VVV ≥ 0.
Moreover, the convergence of the multiplicative update cannot
be ensured [45].

Another approach is to exploit projected gradient
descent [42], resulting in

UUUk+1 = max
(

0,UUUk − η
((

UUUkVVVk
)

���
− XXX���

)(
VVVk

)T)
(10a)

VVVk+1 = max
(

0,VVVk − η
(

UUUk+1
)T((

UUUk+1VVVk
)

���
− XXX���

))
(10b)

where η > 0 is the step size. Compared with multiplicative
update, its convergence is guaranteed. But η should be appro-
priately chosen to compromise between the convergence speed
and accuracy.

III. PROPOSED ALGORITHMS FOR ROBUST MATRIX

COMPLETION

In this section, two algorithms are proposed for RMC,
including a basic version and its fast variant. Besides, a
Laplacian kernel-based anomaly detector is developed for
adaptively updating the penalty parameter.

A. Algorithm Development

We consider that the impulsive noise comprises Gaussian
noise with small power and sparse impulses with large power.
Hence, XXX��� that is corrupted by impulsive noise is formu-
lated as

XXX��� = X̃XX��� + GGG��� + SSS��� (11)
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where X̃XX��� is the incomplete noise-free matrix, GGG��� represents
the Gaussian noise, and SSS��� signifies the sparse impulses.
Based on matrix factorization, we recast the RMC problem as

min
UUU,VVV,SSS

‖XXX��� − (UUUVVV)��� − SSS���‖2
F + μ‖SSS���‖0 (12)

where ‖SSS���‖0 is utilized to separate outliers from XXX���,
‖XXX��� − (UUUVVV)��� − SSS���‖2

F is able to resist the Gaussian noise,
and μ > 0 is the penalty parameter which controls the spar-
sity of SSS���. In our algorithms, μ is automatically updated by
a Laplacian kernel-based method.

Before proceeding, we analyze the advantage of (12) over
the entrywise �p-norm-based methods and Huber loss-based
approaches. It is known that the Frobenius norm is superior
to the �p-norm under Gaussian noise. For impulsive noise, it
is generally comprised of normal disturbances and outliers. In
comparison with the Frobenius norm, the �p-norm weakens the
impact of outliers, but cannot handle Gaussian noise as good
as the Frobenius norm. In (12), the �0-norm and Frobenius
norm are able to attain optimality to separate the anomalies and
resist the Gaussian noise, respectively. Therefore, our formula-
tion may attain a better recovery performance than traditional
robust models.

It is clear that (12) is an unconstrained and multivariable
optimization problem with three variables, namely, UUU, VVV , and
SSS. Therefore, BCD is adopted as the solver, leading to the
following iterative procedure:

UUUk+1 = arg min
UUU

‖XXX��� −
(

UUUVVVk
)

���
− SSSk

���‖2
F (13a)

VVVk+1 = arg min
VVV

‖XXX��� −
(

UUUk+1VVV
)

���
− SSSk

���‖2
F (13b)

SSSk+1 = arg min
SSS

‖NNNk+1
��� − SSS���‖2

F + μk+1‖SSS���‖0 (13c)

where NNNk+1
��� = XXX��� − (UUUk+1VVVk+1)���. Note that μ is updated by

Algorithm 2 before computation of SSSk+1; hence, μk+1 replaces
μ. It is seen that the BCD alternately optimizes one of the vari-
ables with fixing the two remaining variables at each iteration.
We first focus on computing UUUk+1 given VVVk and SSSk. As (13a)
can be decoupled with respect to (w.r.t.) uuuT

i , it is equivalent to
the following m independent subproblems:

(
uuuT

i

)k+1 = arg min
uuuT

i

‖
(

uuuT
i VVVk

)
���T

i

− (
yyyT

i

)
���T

i
‖2

2 (14)

where (yyyT
i )���T

i
and ���T

i are the ith row of YYY��� = XXX���−SSSk
��� and ���,

respectively. It is clear that the residual between (uuuT
i VVVk)���i and

(yyyT
i )���i is only affected by the observed entries. Therefore, we

remove the unobserved elements, leading to

(
uuuT

i

)k+1 = arg min
uuuT

i

‖uuuT
i AAA − bbbT‖2

2 (15)

where bbbT ∈ R
‖���T

i ‖1 and AAA ∈ R
r×‖���T

i ‖1 only contain the
observed entries of (yyyT

i )���T
i

and the corresponding columns

of VVVk, respectively. To be specific, we provide an example for
determining AAA and bbb. Consider VVVk = [vvv1,vvv2,vvv3,vvv4,vvv5] ∈ R

r×5

and (yyyT
i )���T

i
= [0, y2, 0, y4, 0] ∈ R

5 with ���T
i = [0, 1, 0, 1, 0].

Then, we obtain AAA = [vvv2,vvv4] and bbbT = [y2, y4].

Algorithm 1 �0-BCD for RMC

Input: XXX�, �, r and Kmax
Initialize: Randomly initialize VVV1 ∈ R

r×n, and SSS1 = 000 ∈ R
m×n

for k = 1, 2, · · · , Kmax do
for i = 1, 2, . . . , m do

Compute (uuuT
i )k+1 using (15)

end for
for j = 1, 2, . . . , n do

Compute vvvk+1
j using (18)

end for
Construct NNNk+1

���
= XXX��� − (UUUk+1VVVk+1)���

Compute μ̃k+1 with input |nnnk+1| via Algorithm 2
μk+1 = min(μ̃k+1, μk)
sssk+1 = T

μk+1 (nnnk+1)

Calculate SSSk+1 based on sssk+1 and ���

end for
Output: MMM = UUUk+1VVVk+1

Algorithm 2 Outlier Detector Based on Laplacian Kernel

Input: nnn and ε

σ 2 = 1.06 × min(σE, IQR/1.34) × dim(nnn)−0.2

www = kσ (nnn)

� = {i} based on wi ≤ ε

μ = min(n2
1, n2

2, . . . , n2
i ) s.t. i ∈ �

Output: μ and �

Since (15) is a linear least squares problem, its closed-form
solution is

(
uuuT

i

)k+1 = bbbT(AAA)† (16)

whose computational complexity is O(‖���T
i ‖1r2).

Problem (13b) has the same structure as (13a) and,
hence, (13b) can be addressed in a similar manner. Specifically,
we decompose (13b) into n independent subproblems

vvvk+1
j = arg min

vvvj
‖
(

UUUk+1vvvj

)
���j

− (
yyyj

)
���j

‖2
2 (17)

where (yyyj)���j and ���j are the jth column of YYY��� and ���, respec-
tively. After removing the missing entries, (17) is rewritten as

vvvk+1
j = arg min

vvvj
‖CCCvvvj − ddd‖2

2 (18)

where ddd ∈ R
‖���j‖1 and CCC ∈ R

‖���j‖1×r only involve the observed
entries of (yyyj)���j and corresponding rows of UUUk+1, respectively.
Then, the solution to (18) is

vvvk+1
j = CCC†ddd (19)

with computational complexity of O(‖���j‖1r2).
For (13c), its solution is only determined by the observed

entries of NNNk+1
��� . In addition, si,j only depends on (nk+1)i,j. We

then rewrite (13c) in vector form

sssk+1 = arg min
sss

‖nnnk+1 − sss‖2
2 + μk+1‖sss‖0 (20)

where sss ∈ R
‖���‖1 and nnnk+1 ∈ R

‖���‖1 . Note that the method to
determine μk+1 is presented in the next section. The process
of attaining nnnk+1 from NNNk+1

��� is illustrated as follows:

NNNk+1
��� =

[
0 n12 0 n14

n21 n22 n23 0

]
(21)

and the corresponding ��� is ��� = [0, 1, 0, 1; 1, 1, 1, 0]. Then,
we obtain nnnk+1 = [n21, n12, n22, n23, n14]T.
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For (20), its solution is computed as

sssk+1 = Tμk+1

(
nnnk+1

)
=

{ (
nk+1

)
i, if |(nk+1

)
i| ≥ √

μk+1

0, otherwise
(22)

where Tμk+1(·) is a hard-thresholding operator that keeps the
values above the threshold, and sets the variables below the
threshold to 0 [46]. After obtaining sssk+1, we update SSSk+1

based on sssk+1 and ��� via the inverse operation of obtain-
ing nnnk+1 from NNNk+1

��� . The proposed method is called �0-BCD
whose steps are summarized in Algorithm 1. Furthermore, its
convergence analysis is provided in Appendix A.

B. Adaptive Penalty

In traditional penalty methods, the penalty parameter μ is
manually set and fixed during iterations. It is known that if μ

is chosen too large or too small, the results may be consider-
ably different. Therefore, a dynamical and adaptive μ may be
preferred in real-world applications.

It can be known from (22) that μ in �0-BCD determines the
sparsity of SSS���, that is, the number of outliers. Hence, the core
of estimating μ is how to identify anomalies accurately from
the residual. Laplacian kernel [47] is one popular method to
detect outliers, defined as

kσ (x − y) = exp

(
−|x − y|

σ

)
. (23)

Note that σ is called the kernel size or bandwidth. It is deter-
mined using the concept of kernel density estimation, namely,
Silverman’s rule [48]. The value of kσ (x − y) decreases as the
value of |x − y| increases. Especially, the very large value of
|x − y| results in kσ (x − y) = 0. Hence, the Laplacian kernel
has outlier detection capability [49].

To estimate μ given an input nnn, we first adopt the
Silverman’s rule to compute the kernel size

σ = 1.06 × min(σE, IQR/1.34) × dim(nnn)−0.2 (24)

where σE and IQR are the standard deviation and interquartile
range of nnn, respectively. After obtaining σ , we compute www as
www = kσ (nnn) where wi ≤ ε means that ni is an outlier. In our
method, ε is set to 10−20. Based on www, we obtain a coordinate
set � of anomalies for wi ≤ ε and then μ is calculated as

μ = min
(

n2
1, n2

2, . . . , n2
i

)
s.t. i ∈ �. (25)

The estimation of μ based on the Laplacian kernel is sum-
marized in Algorithm 2. Given nnn ∈ R

‖���‖1 , the computational
complexity for calculating μ is O(‖���‖1).

C. Fast Variant

In �0-BCD, we retain the indices of the anomalies in ���. A
novel perspective on solving RMC is that outlier-contaminated
elements are treated as missing entries. In accordance with
this scheme, we divide ��� into two binary matrices such that
��� = ���g + ���o. That is, 1 in ���o and ���g denotes an observed
entry with and without outlier, respectively. In other words, ���g

implies that the observed entries are noise-free or corrupted
by Gaussian noise. The computational complexities of cal-
culating (uuuT

i )k+1 and vvvk+1
j are O(‖���T

i ‖1r2) and O(‖���j‖1r2),

Algorithm 3 �0-BCD-F for RMC

Input: XXX���, ���, r and Kmax
Initialize: Randomly initialize VVV1 ∈ R

r×n, and SSS1 = 000 ∈ R
m×n

for k = 1, 2, · · · , Kmax do
Calculate ���o,k via (27)
Update ���g,k = ��� − ���o,k

Compute UUUk+1 and VVVk+1 based on ���g,k using Algorithm 1
Compute SSSk+1 based on ��� using Algorithm 1

end for
Output: MMM = UUUk+1VVVk+1

respectively. Simply speaking, the computational cost depends
on the number of nonzero entries in ���. If ���g replaces ��� to
handle MC problem, the computational complexity will reduce
because ‖���g‖1 ≤ ‖���‖1.

Based on the above-mentioned idea, the iterative procedure
to solve (12) is rewritten as

UUUk+1 = arg min
UUU

‖XXX���g,k −
(

UUUVVVk
)

���g,k
− SSSk

���g,k‖2
F (26a)

VVVk+1 = arg min
VVV

‖XXX���g,k −
(

UUUk+1VVV
)

���g,k
− SSSk

���g,k‖2
F (26b)

SSSk+1 = arg min
SSS

‖NNNk+1
��� − SSS���‖2

F + μk+1‖SSS���‖0. (26c)

Note that the observation set in updating UUUk+1 and VVVk+1

becomes ���g,k. However, updating SSSk+1 is still based on ���

since one-off anomaly detection may not be accurate.
Computation of SSSk+1 founded on ��� is able to release the
mistaken entries to ���. The process of solving (26a), (26b),
and (26c) is similar to that of �0-BCD. Accordingly, UUUk+1,
VVVk+1 and SSSk+1 are determined analogous to the �0-BCD. The
difference is that the fast method requires computing ���g,k

before updating UUUk+1.
To determine ���g,k, we first compute a binary ���o,k ∈ R

m×n

based on SSSk

(
���o,k

)
i,j

=
{

1, if
(
SSSk

)
i,j 	= 1

0, otherwise.
(27)

Then, ���g,k = ��� − ���o,k.
Since SSSk is updated iteratively by �0-BCD, the anomaly

impact on computation of UUUk and VVVk slowly diminishes as
iteration increases. In contrast, this fast variant assumes that
the entries containing outliers are unobserved. In other words,
updating UUUk and VVVk is not affected by anomalies at the begin-
ning. Compared with the solution which is affected by outliers,
the result without the impact of outliers has a smaller estima-
tion error at the same number of iterations. In addition, the fast
variant has lower computational complexity than the �0-BCD
and, thus, it is called �0-BCD-F. The steps of the �0-BCD-F
are summarized in Algorithm 3.

Note that (26a)–(26c) cannot be considered to address the
original problem (12) since the solutions of UUU and VVV are com-
puted based on a subset of ���. Thereby, it is difficult to prove
its convergence. Its convergence is verified using empirical
results in Section V.

D. Computational Complexity Analysis

The computational complexities of calculating (uuuT
i )k and vvvk

j
are O(‖���T

i ‖1r2) and O(‖���j‖1r2), respectively. Besides,
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TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

calculating μk requires the complexity of O(‖���‖1). Since∑m
i=1 ‖���T

i ‖1 = ∑n
j=1 ‖���j‖1 = ‖���‖1, �0-BCD has the

computational complexity of O(‖���‖1r2) for one iteration.
For �0-BCD-F, the outlier-contaminated elements are con-

sidered as missing entries and, hence, we have ‖���g‖1 < ‖���‖1.
Besides, the �0-BCD-F’s complexity is dominated by the
computations of UUUk and VVVk. Accordingly, its complexity is
O(‖���g‖1r2).

Table I tabulates the computational requirement of six algo-
rithms where T > 0 is the number of inner iterations
in the �p-reg, �p-ADMM, and M-estimation. For VBMFL1,
mn > ‖���‖1 holds. It is clear that the proposed methods have
lower computational complexity than the existing algorithms.

IV. EXTENSION TO NONNEGATIVE MATRIX COMPLETION

In this section, we extend the ideas in RMC to NRMC,
yielding a basic method and its fast variant.

A. Algorithm Development

By modifying RMC, the RNMC formulation is

min
UUU≥0,VVV≥0,SSS

‖ XXX��� − (UUUVVV)��� − SSS���‖2
F + μ‖SSS���‖0 (28)

where SSS is not constrained to be positive. Although (28) is a
constrained and multivariable problem, the constraints can be
affiliated with each block. Thereby, BCD can also be adopted
as the solver, leading to

UUUk+1 = arg min
UUU≥0

‖XXX��� −
(

UUUVVVk
)

���
− SSSk

���‖2
F (29a)

VVVk+1 = arg min
VVV≥0

‖XXX��� −
(

UUUk+1VVV
)

���
− SSSk

���‖2
F (29b)

SSSk+1 = arg min
SSS

‖NNNk+1
��� − SSS���‖2

F + μk+1‖SSS���‖0. (29c)

It is worth mentioning that (13c) and (29c) are the same. To
handle (29a) and (29b), the MM algorithm is exploited. We
briefly introduce MM for completeness.

B. Majorization–Minimization

Consider a general optimization problem

min
x

h(x) s.t. x ∈ X (30)

where h : X → R is a continuous function and X is a
nonempty closed set. MM [50], [51] employs a surrogate func-
tion g(x|xt) of h(x) to solve the original problem iteratively.
Note that g(x|xt) should satisfy the following properties.

1) h(xt) = g(xt|xt).
2) h(x) ≤ g(x|xt), s.t. x ∈ X .
3) ∇h(xt) = ∇g(xt|xt).

Then, x is iteratively updated as

xt+1 = arg min
x

g
(
x|xt). (31)

We see that MM uses g(x|xt) to approximate the original func-
tion at xt and then searches for the solution to g(x|xt). In
addition, the convergence of MM has been proved [51].

C. �0-BCD-MM

We first focus on tackling (29a). From �0-BCD, it is known
that (29a) can be decomposed into m independent subproblems

(
uuuT

i

)k+1 = arg min
uuuT

i ≥0
‖uuuT

i AAA − bbbT‖2
2 = arg min

uuui≥0
‖AAATuuui − bbb‖2

2

= arg min
uuui≥0

uuuT
i AAAAAATuuui − 2(AAAbbb)Tuuui + bbbTbbb

= arg min
uuui≥0

uuuT
i LLLuuui − 2(AAAbbb)Tuuui (32)

where bbbTbbb is dropped since it is a constant w.r.t. uuui, and
LLL = AAAAAAT ∈ R

r×r. In order to derive a closed-form update
to solve (32), we introduce a surrogate function to majorize
the quadratic term of uuuT

i LLLuuui.
Lemma 1 [52]: Let LLL ∈ R

r×r and QQQ ∈ R
r×r be real

symmetric matrices such that QQQ � LLL. Then, for any vector
uuu ∈ R

r, the quadratic function uuuTLLLuuu is majorized at uuut by
uuuTQQQuuu + 2uuuT(LLL − QQQ)uuut + (uuut)T(QQQ − LLL)uuut.

Based on Lemma 1, the surrogate function of uuuT
i LLLuuui is

formulated as

uuuT
i QQQuuui + 2uuuT

i (LLL − QQQ)uuut
i + (

uuut
i

)T
(QQQ − LLL)uuut

i. (33)

To meet QQQ � LLL, we set QQQ = λmaxIII where λmax is the largest
eigenvalue of LLL. Then, we have

uuuT
i LLLuuui ≤ uuuT

i QQQuuui + 2uuuT
i (LLL − QQQ)uuut

i + (
uuut

i

)T
(QQQ − LLL)uuut

i

= λmaxuuuT
i uuui + 2uuuT

i (LLL − λmaxIII)uuut
i + (

uuut
i

)T
(QQQ − LLL)uuut

i

= λmaxuuuT
i uuui + 2

(
(LLL − λmaxIII)uuut

i

)T
uuui + (

uuut
i

)T
(QQQ − LLL)uuut

i (34)

where the superscript t of uuut
i is the iteration number of the

MM method. Hence, the surrogate function g(uuui|uuut
i) of uuuT

i LLLuuui−
2(AAAbbb)Tuuui in (32) becomes

g
(
uuui|uuut

i

) = λmaxuuuT
i uuui + 2

(
(LLL − λmaxIII)uuut

i − AAAbbb
)T

uuui

+ (
uuut

i

)T
(QQQ − LLL)uuut

i. (35)

Then, according to MM, we iteratively update g(uuu|uuut) to
solve (32) by

uuut+1
i = arg min

uuui≥0
g
(
uuui|uuut

i

)

= arg min
uuui≥0

uuuT
i uuui + (

qqqt)T
uuui (36)

where the term (uuut
i)

T(QQQ − LLL)uuut
i is dropped as it is a constant

w.r.t. uuui, and (qqqt)T = (2/λmax)((LLL − λmaxIII)uuut
i − AAAbbb)T. The

closed-form solution to (36) is

uuut+1
i = I

(
qqqt) =

{
− qt

i
2 , if qt

i < 0
0, otherwise.

(37)
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Algorithm 4 �0-BCD-MM for RNMC

Input: XXX���, ���, r and Kmax
Initialize: Randomly initialize VVV1 ∈ R

r×n, and SSS1 = 000 ∈ R
m×n

for k = 1, 2, · · · , Kmax do
for i = 1, 2, . . . , m do

Randomly initialize uuu0
i ∈ R

r

Compute λmax based on LLL = AAAAAAT

for t = 1, 2, . . . do
qqqt = 2

λmax
((LLL − λmaxIII)uuut

i − AAAbbb)

uuut+1
i = I(qqqt)

Stop if stopping criterion is met.
end for
uuuk+1

i = uuut+1
i

end for
for j = 1, 2, . . . , n do

Randomly initialize vvv0
j ∈ R

r

Compute λmax based on LLL = CCCTCCC
for t = 1, 2, . . . do

qqqt = 2
λmax

((LLL − λmaxIII)vvvt
j − CCCTddd)

vvvt+1
j = I(qqqt)

Stop if stopping criterion is met.
end for
vvvk+1

j = vvvt+1
j

end for
Construct NNNk+1

���
= XXX��� − (UUUk+1VVVk+1)���

Compute μ̃k+1 with input |nnnk+1| via Algorithm 2
Update μk+1 = min(μ̃k+1, μk)

Compute sssk+1 = T
μk+1 (nnnk+1)

Update SSSk+1 based on sssk+1 and ���

end for
Output: MMM = UUUk+1VVVk+1

The proof of the closed-form solution is provided in
Appendix B. When uuut+1

i converges, it becomes the optimal
solution to (32).

For (29b), it can be handled in a similar way, leading to the
following n independent subproblems:

vvvk+1
j = arg min

vvvj≥0
‖CCCvvvj − ddd‖2

2

= arg min
vvvj≥0

vvvT
j CCCTCCCvvvj − 2

(
CCCTddd

)T
vvvj + dddTddd

= arg min
vvvj≥0

vvvT
j LLLvvvj − 2

(
CCCTddd

)T
vvvj (38)

where LLL = CCCTCCC. It is clear that (38) is equivalent to (32).
Thus, vvvk+1

j can be sought via the same way

vvvt+1
j = arg min

vvvj≥0
vvvT

j vvvj + (
qqqt)T

vvvj (39)

where (qqqt)T = (2/λmax)((LLL − λmaxIII)vvvt
j − CCCTddd)T. When vvvt+1

j

converges, vvvk+1
j is determined, that is, vvvk+1

j = vvvt+1
j .

Finally, (29c) is the same as (13c) in the �0-BCD and, hence,
SSSk+1 can be computed as in Algorithm 1.

Algorithm 4 summarizes the steps of �0-BCD-MM. Note
that there are three layers of iterative updates. The outer updates
on UUUk+1, VVVk+1, and SSSk+1 correspond to the BCD method. The
middle layer calculates uuuk+1

i and vvvk+1
j of UUUk+1 and VVVk+1, respec-

tively. The inner refers to the iteration of the MM algorithm.
Parallel and distributed computing can be used to calculate uuuk+1

i
and vvvk+1

j and, thus, the computational efficiency can be greatly
increased. Moreover, the termination condition for uuut+1 is sug-
gested as ‖uuut+1 − uuut‖2

2/dim(uuu) < 10−5 which means that the

Algorithm 5 �0-BCD-MM-F for RNMC

Input: XXX���, ���, r and Kmax
Initialize: Randomly initialize VVV1 ∈ R

r×n, and SSS1 = 000 ∈ R
m×n.

for k = 1, 2, · · · , Kmax do
Calculate ���o,k via (27)
Update ���g,k = ��� − ���o,k

Compute UUUk+1 and VVVk+1 based on ���g,k using Algorithm 4
Compute SSSk+1 based on ��� using Algorithm 4

end for
Output: MMM = UUUk+1VVVk+1

average power difference between adjacent iterations of each
entry is less than 10−5. Similarly, vvvt+1 also adopts this stopping
criterion.

Regarding its objective value convergence, the proof of �0-
BCD is applicable. Since the convergence of MM algorithm
is ensured [51], uuuk+1

i and vvvk+1
j are the optimal solutions to

the convex problems (32) and (38), respectively. That is, the
updates of UUUk+1 and VVVk+1 by Algorithm 4 keep the objective
value nonincreasing. Thus, in accordance to the convergence
analysis of the �0-BCD, the �0-BCD-MM’s convergence is
guaranteed.

D. Fast Variant

The strategy in �0-BCD-F can be used to speed up the �0-
BCD-MM. When we treat the outlier-contaminated elements
as unobserved entries, the �0-BCD-MM evolves into �0-BCD-
MM-F. The steps of the �0-BCD-MM-F are summarized in
Algorithm 5.

E. Computational Complexity Analysis

To facilitate presentation, we assume that ‖���T
i ‖1 > ‖���j‖1.

For �0-BCD-MM, the computational complexity for LLL is
O(r2‖���T

i ‖1). To compute λmax, the complexity is O(r3).
The MM computational complexity is O(rT‖���T

i ‖1) where
T is the required iteration number. Thus, the total com-
putational complexity is O(rT‖���‖1) because T � r and∑m

i=1 ‖���T
i ‖1 = ‖���‖1. On the other hand, the computational

complexity of �0-BCD-MM-F is O(rT‖���g‖1).

V. SIMULATION RESULTS

In this section, the proposed methods are evaluated using
synthetic and real-world data. In detail, Sections I and II exam-
ine our RMC algorithms, while the remaining two sections test
the suggested NRMC approaches.

A. Synthetic Data

The noise-free and complete matrix XXX ∈ R
400×500 with

r = 10 is generated by the product of XXX1 ∈ R
400×10 and

XXX2 ∈ R
10×500 whose entries obey the standard Gaussian distri-

bution. Then, the incomplete matrix without noise X̃XX��� consists
of randomly selected 50% entries from XXX. In other words, 50%
entries of ��� are equal to 1, and the rest are 0. Moreover, X̃XX���

is added with independent impulsive noise which is modeled
by Gaussian mixture model (GMM). The probability density
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function (PDF) of GMM is given by

pv(v) = c1√
2πσ1

exp

(
− v2

2σ 2
1

)
+ c2√

2πσ2
exp

(
− v2

2σ 2
2

)
(40)

where c1 + c2 = 1 with 0 < ci < 1, and σ 2
1 and σ 2

2 are vari-
ances. To simulate the impulsive noise, it requires σ 2

2 � σ 2
1

and c2 < c1. It means that sparse and high power noise sam-
ples with σ 2

2 and c2 are mixed in Gaussian background noise
with small variance σ 2

1 . In our simulations, we set σ 2
2 = 100σ 2

1
and c2 = 0.1. The signal-to-noise ratio (SNR) is defined as

SNR = ‖X̃XX���‖2
F

‖���‖1σ 2
v

(41)

where σ 2
v = ∑2

i=1 ciσ
2
i is the total noise variance.

The recovery performance is measured by mean square error
(MSE), defined as

MSE = ‖MMM − XXX‖2
F

mn
(42)

where MMM is the recovered matrix.
1) Convergence Behavior: We first present the convergence

behaviors of the �0-BCD and �0-BCD-F. Fig. (S.1) in the
supplementary material plots the objective value convergence
where “Loss” denotes the value of Lμk(UUUk,VVVk,SSSk) = ‖XXX��� −
(UUUkVVVk)���−SSSk

���‖2
F +μk‖SSSk

���‖0. It is seen that the objective value
of the proposed algorithms is nonincreasing, and converges
within ten iterations.

Besides, Figs. (S.2) and (S.3) in the supplementary material
show the sequence convergence of the �0-BCD and �0-BCD-F,
respectively. Since there are numerous entries of UUUk, VVVk, and
SSSk, we only plot partial entries, that is, ui,i, vi,i and si,i. As the
rank is 10, there are ten curves for UUUk and VVVk. Besides, the
number of curves for SSSk is much less than 400 because of its
sparsity. It is observed that the sequence {UUUk,VVVk,SSSk} is able
to converge within ten iterations.

Moreover, we investigate the impact of initialization,
namely, VVV , in 50% randomly missing data and 3 dB GMM
noise. Fig. (S.4) in the supplementary material plots 100 con-
vergence curves for each algorithm where VVV are randomly
initialized. Specifically, the average steady-state MSEs of the
�0-BCD-F and �0-BCD are 5.4582×10−2 and 5.4592×10−2,
respectively. Hence, their performance seems insensitive to the
parameter initialization.

2) Performance Comparison: We compare the �0-BCD-F
and �0-BCD with popular methods, including �p-reg [25],
�p-ADMM [25], M-estimation [27], VBMFL1 [31], and
ORMC [22]. Fig. 1 depicts the MSE convergence performance
of different methods under 50% randomly missing data and
additive GMM noise of SNR = 3 dB. It is observed that
the �0-BCD-F and �0-BCD have a similar steady-state MSE
which is lower than that of the competing algorithms. Hence,
the proposed methods have superior recovery performance
over the existing approaches. As the ORMC is designed for
the situation that the observed matrix has a few Gaussian
noise-contaminated columns, it cannot achieve satisfactory
performance in impulsive noise.

Fig. 1. MSE versus iteration number with 50% randomly missing data and
SNR = 3 dB GMM noise.

TABLE II
ELAPSED TIME OF DIFFERENT METHODS

Fig. 2. MSE versus percentage of randomly missing data by different
methods under 3 dB GMM noise.

The runtimes are tabulated in Table II where the stopping
condition is MSE < 0.1. Since the ORMC cannot attain
this criterion, its result is not presented. We see that the
elapsed time of our algorithms is much less than that of the
competitors. In addition, the �0-BCD-F is faster than �0-BCD.

The impact of the percentage of missing data with 3 dB
GMM noise is plotted in Fig. 2. We see that the MSEs of
�0-BCD-F and �0-BCD are the smallest among the seven
algorithms for all percentages. Thus, our methods achieve a
superior recovery performance over the �p-reg, �p-ADMM,
M-estimation, VBMFL1, and ORMC. It is worth noting that
the �0-BCD-F has comparable performance to �0-BCD, indi-
cating that the scheme of discarding the outlier-contaminated
entries is feasible.

The performance under different SNRs is investigated in
Fig. 3. As the MSEs of the ORMC are too large such that it
is difficult to differentiate the remaining algorithms, its results
are not included. We clarify that, under 9 dB GMM noise,
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Fig. 3. MSE versus SNR by different algorithms with 50% randomly missing
data.

Fig. 4. Illustration of original image and noisy image corrupted by salt-and-
pepper noise with SNR = 5 dB.

the MSEs of the �0-BCD-F, �0-BCD, �p-reg, �p-ADMM,
M-estimation, and VBMFL1 are 0.01427, 0.01434, 0.01996,
0.02074, 0.01791, and 0.01737, respectively. It is seen that
our developed methods outperform the competing algorithms
at different levels of the impulsive noise.

B. Image Inpainting

A popular application of MC is grayscale image inpaint-
ing [26]. Images, in practice, may not be fully captured due
to damage to the photosensitive device or the shadow from
other objects. In addition, the image data may be mixed with
impulsive noise during wireless transmission or bit errors in
the signal acquisition stage. Although the impulse amplitude
may be very large, they are set to the largest or smallest
admissible values after quantization, giving the image a “salt
and pepper” like appearance. For 8-bit images, the maxi-
mum and minimum values are 0 (black) and 255 (white),
respectively. The salt-and-pepper noise has a noise density
coefficient, denoted as τ . Note that the relationship between τ

and SNR is τ = 1/SNR [25]. For a given value of τ , approx-
imately 0.5τ of the pixels become 255 or 0. Fig. 4 shows the
noiseless and noisy pictures at τ = 0.2.

It is worth mentioning that the PDF of the salt-and-
pepper noise does not comply with GMM and, hence, the
proposed algorithms cannot be directly adopted to resist the
salt-and-pepper noise. Since the pixels which are corrupted
by salt-and-pepper noise are either 255 or 0, it is easy to

detect the location of outliers. In general, dispersed black and
white pixels are not the integers of 0 and 255, respectively,
but have values close to 0 and 255. If there exists an area of
white or black, it is not difficult to differentiate it and the salt-
and-pepper noise. This is because that the noise is discrete,
while the area is continuous. Therefore, we directly utilize
255 and 0 to identify the salt and pepper pixels, which is also
adopted by [53]. Based on the above strategy, (13a)–(13c) are
simplified as

UUUk+1 = arg min
UUU

‖XXX��� −
(

UUUVVVk
)

���
− SSSk

���‖2
F (43a)

VVVk+1 = arg min
VVV

‖XXX��� −
(

UUUk+1VVV
)

���
− SSSk

���‖2
F (43b)

SSSk+1 = XXX���o −
(

UUUk+1VVVk+1
)

���o
(43c)

where ���o ∈ R
m×n is the subset of ���, and contains the indices

of outliers. Similarly, (26a)–(26c) can be reexpressed as

UUUk+1 = arg min
UUU

‖
(

UUUVVVk
)

���−���o
− XXX���−���o‖2

F (44a)

VVVk+1 = arg min
VVV

‖
(

UUUk+1VVV
)

���−���o
− XXX���−���o‖2

F. (44b)

It is seen that RMC is converted into a tractable problem with
the salt-and-pepper noise.

One image, called windows, is first used to compare the
proposed algorithms with existing approaches, including �p-
reg, �p-ADMM, M-estimation, VBMFL1, and ORMC. All
algorithms use the same rank of 10. Fig. 4 shows the original
image and the noisy image with salt-and-pepper noise. The
recovery performance is measured by two metrics, namely,
peak SNR (PSNR) and structural similarity (SSIM). They
can be computed by the built-in MATLAB commands, that
is, “psnr(recovered, original)” and “ssim(recovered, original).”
Larger values of PSNR and SSIM mean that the recovery
performance is better.

Fig. 5 depicts the observed pictures and recovered images
by seven methods where two types of masks, namely, random
and fixed masks are investigated. The random mask implies
that the image has 50% randomly distributed missing entries,
while the fixed mask contains the distorted text of “MC.” It is
observed that the PSNRs and SSIMs of �0-BCD and �0-BCD-
F are larger than those of the competing algorithms. Hence, the
devised methods outperform the existing approaches in these
two missing pattern types.

Moreover, the impact of the percentage of randomly miss-
ing data on recovery performance is tabulated in Table III
under 5 dB salt-and-pepper noise. We see that the PSNRs
and SSIMs of the proposed methods are higher than those
of �p-reg, �p-ADMM, M-estimation, VBMFL1 and ORMC in
different ratios.

Furthermore, eight well-known images, depicted in Fig. 6,
are selected to evaluate the inpainting performance. Each pic-
ture is evaluated with the random and fixed masks under
the previous settings. The comparison results are tabulated in
Table IV. It is seen that, in most cases, the �0-BCD and �0-
BCD-F show remarkable superiority over their competitors. In
a few cases, the metric values of the suggested algorithms are
slightly smaller than those of the existing methods, such as

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on October 19,2023 at 00:48:53 UTC from IEEE Xplore.  Restrictions apply. 



7208 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

Fig. 5. Performance of different approaches in two types of masks with 5 dB salt-and-pepper noise. The left column shows the observed pictures with
different masks, while the recovered images are shown from the second column to the end.

TABLE III
PSNR AND SSIM VERSUS PERCENTAGE OF RANDOMLY OBSERVED DATA WITH 5 dB SALT-AND-PEPPER NOISE BY DIFFERENT METHODS

the PSNR of the �0-BCD-F in Image-3, as well as SSIM of
�0-BCD in Image-7 and Image-8 in the text mask scenarios.

C. Nonnegative Synthetic Data

In this section, �0-BCD-MM and �0-BCD-MM-F are exam-
ined using synthetic data. A noise-free matrix XXX ∈ R

400×500

of r = 10 is generated by the product of |XXX1| ∈ R
400×10 and

|XXX2| ∈ R
10×500 where entries of XXX1 and XXX2 satisfy the stan-

dard Gaussian distribution. We randomly select 50% entries
of XXX as the incomplete observations and then add GMM noise
of SNR = 6 dB. Two methods, namely: 1) MF-ADMM [38]
and 2) LRA-ADMM [39], are compared with our approaches.

Fig. 7 illustrates the MSE convergence performance. It is
observed that the recovery errors of the two proposed meth-
ods are lower than those of the competing algorithms. This
is because the MF-ADMM and LRA-ADMM do not take
impulsive noise into account in their formulation.

D. Hyperspectral Imaging

There are two approaches to solve hyperspectral imaging,
namely, matrix-based and tensor-based methods. Comparison

Fig. 6. Original images for image inpainting.

of these two strategies is studied in [54]. The results show that
matrix-based methods outperform tensor-based approaches
when the spectral bands are sufficient. This is because restor-
ing unobserved entries are difficult at a certain frequency based
on the same location in other frequencies when spectral bands
are limited.

In this section, we apply the proposed matrix-based algo-
rithms to restore hyperspectral data. Two opensource datasets
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TABLE IV
PSNR AND SSIM OF DIFFERENT ALGORITHMS ON EIGHT IMAGES WITH TWO TYPES OF MASKS AND 5 dB SALT-AND-PEPPER NOISE

Fig. 7. MSE versus iteration number with 50% missing data and 6 dB GMM
noise.

are utilized, that is: 1) Indian pines and 2) Salinas scene1

whose dimensions are 145 × 145 × 200 and 200 × 200 × 200,
respectively. The dimensions of 145 × 145 × 200 imply that
the hyperspectral dataset has 200 spectral bands or slices, and
each slice has the dimensions of 145 × 145. Prior to handling
hyperspectral image inpainting, it requires reshaping each slice

1URL: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes

Fig. 8. Original images of Salinas and Indian pines scenes, and corresponding
incomplete images with 30% randomly missing data and 60 dB GMM noise.

into a vector and then combining all vectors into a matrix.
Furthermore, the incomplete matrix and observed matrix with
GMM noise can be generated.

Two slices of each dataset are selected to evaluate the
recovery performance, including the 90th and 175th slices.
Fig. 8 shows the original images of Salinas and Indian pines
scenes as well as the corresponding observed images with 30%
randomly missing data and 6 dB GMM noise. The visual
presentation of Salinas is shown in Fig. 9. Moreover, the
results of the Indian pines are depicted in Fig. 10. It is seen
that the PSNRs and SSIMs of the proposed methods are much
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Fig. 9. Recovered images by �0-BCD-MM-F, �0-BCD-MM, LRA-ADMM,
and MF-ADMM using the Salinas dataset.

Fig. 10. Recovered images by �0-BCD-MM-F, �0-BCD-MM, LRA-ADMM,
and MF-ADMM using the Indian pines dataset.

higher than those of MF-ADMM and LRF-ADMM. Therefore,
our algorithms attain a better recovery performance than the
existing approaches.

VI. CONCLUSION

In this article, we exploited the entrywise �0-norm and
matrix factorization for RMC. The principle is that outliers
are separated from the observed matrix by a �0-norm regular-
ization term. Besides, the penalty parameter of the �0-norm
was automatically updated during the iterative procedure. The
resultant multivariable optimization problem was solved by
BCD, yielding two algorithms, namely: 1) �0-BCD and 2) �0-
BCD-F. In the �0-BCD, anomalies are discerned and separated
from the observed matrix, while the �0-BCD-F treats the
outlier-contaminated data as unobserved entries. Our RMC
approach was extended to solve RNMC where the nonneg-
ativity constraint is handled by MM. Then, �0-BCD-MM and
�0-BCD-MM-F were proposed for RNMC. Simulation results
on synthetic and real-world data demonstrated the superiority
of our algorithms over the state-of-the-art methods in terms of
recovery accuracy and computational efficiency. Although the
convergence of the objective value {L(UUUk,VVVk,SSSk)} has been
proved, we will establish sequence convergence of BCD for
the nonconvex and noncontinuous objective function in future
work.

APPENDIX A
CONVERGENCE ANALYSIS OF ALGORITHM 1

Before the analysis of the objective value convergence of
Algorithm 1, we define a loss function Lμk(UUUk,VVVk,SSSk) =
‖XXX��� − (UUUkVVVk)��� − SSSk

���‖2
F + μk‖SSSk

���‖0. It is clear that
Lμk(UUUk,VVVk,SSSk) is lower bounded by zero. To prove the objec-
tive value convergence, we need to show that the update of
each variable by Algorithm 1 keeps its value nonincreasing

Lμk+1

(
UUUk+1,VVVk+1,SSSk+1

)
− Lμk

(
UUUk,VVVk,SSSk

)

= Lμk

(
UUUk+1,VVVk,SSSk

)
− Lμk

(
UUUk,VVVk,SSSk

)

+ Lμk

(
UUUk+1,VVVk+1,SSSk

)
− Lμk

(
UUUk+1,VVVk,SSSk

)

+ Lμk+1

(
UUUk+1,VVVk+1,SSSk

)
− Lμk

(
UUUk+1,VVVk+1,SSSk

)

+ Lμk+1

(
UUUk+1,VVVk+1,SSSk+1

)
− Lμk+1

(
UUUk+1,VVVk+1,SSSk

)
.

(45)

Since UUUk+1 is determined by (15), it minimizes Lμk(UUU,VVVk,SSSk),
resulting in Lμk(UUUk+1,VVVk,SSSk) − Lμk (UUUk,VVVk,SSSk) ≤ 0.
In addition, VVVk+1 and SSSk+1 are the optimal solutions
to minVVV Lμk(UUUk+1, VVV,SSSk) and minSSS Lμk+1(UUUk+1, VVVk+1,SSS),
respectively. Therefore, Lμk(UUUk+1, VVVk+1,SSSk) − Lμk(UUUk+1,

VVVk,SSSk) ≤ 0 and Lμk+1(UUUk+1, VVVk+1,SSSk+1) − Lμk+1(UUUk+1,

VVVk+1,SSSk) ≤ 0 hold. For update of μk, it is nonincreas-
ing as described in Algorithm 1 and, hence, it makes
Lμk+1(UUUk+1, VVVk+1,SSSk) − Lμk (UUUk+1,VVVk+1, SSSk) ≤ 0 Thereby,
Lμk+1(UUUk+1,VVVk+1,SSSk+1)−Lμk(UUUk,VVVk,SSSk) ≤ 0 holds, imply-
ing that {Lμk(UUUk,VVVk,SSSk)} is nonincreasing. Furthermore, the
objective function is upper bounded by Lμ0(UUU0,VVV0,SSS0), and
lower bounded by 0. As a result, {Lμk(UUUk,VVVk,SSSk)} generated
by �0-BCD is convergent. �

APPENDIX B
PROOF OF CLOSED-FORM SOLUTION TO PROBLEM (36)

Since (36) is a quadratic programming problem with convex
constraint, the KKT conditions are sufficient and necessary
for its optimal solution. Thereby, we derive the solution using
the KKT conditions. For the sake of presentation simplicity,
we omit the superscripts of uuu and qqq. Then, the Lagrangian
of (36) is

γ (uuu, ννν) = uuuTuuu + qqqTuuu − νννTuuu (46)

where ννν contains the Lagrange multipliers. The derivative of
γ (uuu, ννν) w.r.t. uuu is 2uuu + qqq − ννν. Thus, the solution is

ui = 1

2
(νi − qi). (47)

Based on the KKT conditions, we discuss three cases:
1) qi > 0: It must hold that νi ≥ qi > 0 due to the primal

feasibility: ui ≥ 0. Hence, νi > 0 and then necessar-
ily ui = 0 according to the complementary slackness
condition.

2) qi < 0: From the dual feasibility condition, we obtain
νi ≥ 0, which results in ui > 0. Moreover, the comple-
mentary slackness condition requires uiνi = 0. Thus, we
have νi = 0 and thereby ui = −qi/2.
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3) qi = 0: According to the complementary slackness
condition, we conclude ui = νi = 0.

The compact expression of the solution is thus

uuui =
{− qi

2 , if qi < 0
0, otherwise.

(48)
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