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 A B S T R A C T

Human–object interaction (HOI) detection aims to locate human–object pairs and identify their interaction 
categories in images. Most existing methods primarily focus on supervised learning, which relies on extensive 
manual HOI annotations. Such heavy reliance on closed-set supervised learning limits their generalization 
capabilities to unseen object categories. Inspired by the remarkable zero-shot capabilities of VLM, we propose 
a novel framework, termed Knowledge Integration to HOI (KI2HOI), that effectively integrates the knowledge 
of the visual–language model to improve zero-shot HOI detection. Specifically, we propose a ho-pair encoder to 
supplement contextual and interaction-specific semantic representation decoder into our model. Additionally, 
we propose two fusion strategies to facilitate prior knowledge transfer of VLM. One is visual-level fusion, 
producing more global context interaction features; another is language-level fusion, further enhancing the 
capability of VLM for HOI detection. Extensive experiments conducted on the mainstream HICO-DET and 
V-COCO datasets demonstrate that our model outperforms the previous methods in various zero-shot and 
full-supervised settings. The source code is available in https://github.com/xwyscut/K2HOI.
1. Introduction

Human–object interaction (HOI) detection is a process of detecting 
interaction between a human and an object in an image (Qin, Gu, & 
Tan, 2022). Precisely estimating human–object interactions can greatly 
improve various visual understanding tasks, such as image retrieval (Ji 
et al., 2024; Qin et al., 2022), visual question answering (Kim, Lee, Wu, 
Jung & Lee, 2021), and scene graph generation (Fu et al., 2023; Liu 
& Liu, 2024). Given a series of ⟨‘‘Human’’, ‘‘Object’’, ‘‘Verb’’⟩ triples, 
an HOI detector is needed to locate human–object pairs and identify 
their interactions. However, most HOI detectors typically require a 
significant number of pre-defined HOI categories. Considering the di-
versity and complexity of human–object interaction in the real world, 
it is time-consuming and laborious to define all-natural interaction 
annotations in advance manually.

In recent years, HOI detectors (Antoun & Asmar, 2022; Hou, Yu, 
Qiao, Peng, & Tao, 2021b; Jia & Ma, 2023; Kim, Lee, Kang, Kim 
and Kim, 2021) have led to enhanced performance by successively 
introducing the transformer (Carion et al., 2020), as shown in Fig.  1. 
Nevertheless, the query is initialized directly using the visual features 
derived from object detection in most transformer-based HOI detectors. 
After that, this inadequate query is input into the decoder for the decod-
ing of features, which leads to a shortage of diverse and characteristic 
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interaction features. The development of pre-trained visual–language 
models on large-scale data has significantly accelerated the progress in 
studying zero-shot learning (Du et al., 2022; Kim, Angelova and Kuo, 
2023), especially CLIP (Radford et al., 2021) demonstrates remarkable 
transfer ability in various subsequent tasks. The most recent zero-
shot HOI detectors leverage the comprehensive visual and linguistic 
knowledge of CLIP to detect novel HOIs. For example, the knowledge 
of pre-trained visual language model is transferred to EOID (Wu et al., 
2023) and DOQ (Qu, Ding, Li, Zhong, & Tao, 2022) via knowledge 
distillation to achieve zero-shot HOI detection. Previous approaches 
employ the semantic word embeddings of the HOI labels to create a 
semantic space and then align with visual space, failing to fully capi-
talize on the potential of cross-modal information and Language Models 
in the field of Human–Object Interaction (HOI) detection. Knowledge 
distillation depends on the quality of the teacher model and the used 
training data. When the training process does not include unknown cat-
egories, the distillation process may be biased towards known category 
samples, thereby the generalization ability is limited.

To address these challenges, we propose a novel one-stage zero-shot 
framework for Human–Object Interaction detection, named Knowledge 
Integration to HOI (KI2HOI). We harness the capabilities of founda-
tional models to enhance the comprehension of complex interactive 
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Fig. 1. Comparison of HOI detection. Conventional HOI detection required manually 
annotated datasets for training. Previous HOI detection with language model (LM) 
employed limited knowledge distillation to visual detectors, but it is limited to handling 
potential interactions among unseen human–object pairs. Our model fully leverages 
visual–language model (VLM) and verb queries for effective knowledge integration, to 
promote unseen interaction recognition.

semantics within visual data. Instead of using knowledge distillation 
on CLIP for detectors, KI2HOI learns a priori knowledge from VLM and 
integrates visual–linguistic knowledge in HOI detection.  Specifically, 
we propose two fusion strategies to facilitate prior knowledge transfer 
of VLM. One is the visual level, we first obtain the instances generated 
by the off-the-shelf object detector, then put them into the ho-pair 
encoder to extract rich local and global visual features; another is the 
language level, motivated by the Query2label (Liu, Zhang, Yang, Su, & 
Zhu, 2021), a transformer-based model utilized for multi-label image 
classification, we first extract verb representations through verb fea-
ture learning and then combine them with vision–language knowledge 
through interaction representation decoder. While traditional interac-
tion classification heads work well in handling visible interactions, 
they fall short in tackling invisible ones. Thus, to leverage the zero-
shot recognition capability of the pre-trained VLM, we first use the 
text encoder of VLM to obtain text embeddings of the HOI labels. 
These embeddings then serve as a train-free classifier to perform extra 
interaction classification on the vision–language knowledge-enhanced 
instance queries. We combine the prompt-based verb classification head 
with the redesigned verb representation head to enhance the HOI 
prediction.

To summarize, our contributions are as follows:

• We propose a novel framework, named KI2HOI, for zero-shot HOI 
detection that directly retrieves visual and linguistic knowledge 
of VLM. Our KI2HOI effectively utilizes a priori knowledge and 
achieves superior zero-shot transferability.

• We develop visual and linguistic level strategies to fuse spatial 
information and semantic information for generating more ex-
pressive and intricate representations between verbs and their 
associated interactions.

• We conduct extensive experiments on HICO-DET for the zero-shot 
learning task and perform additional comprehensive experiments 
on HICO-DET and V-COCO for the supervised learning task. Our 
model outperforms the state-of-the-art methods in zero-shot and 
full-supervised settings, establishing a new state-of-the-art.

2. Related works

2.1. Human–object interaction detection

HOI detection methods can be roughly categorized as two-stage or 
one-stage solutions. Two-stage methods (Cao et al., 2023; Cheng, Wang, 
Zhan, & Duan, 2023; Li, Zou, Zhao, Li and Zhong, 2022; Liu, Chen 
& Zisserman, 2020; Wan, Liu, Zhou, Tuytelaars, & He, 2023; Wang, 
Yu, & Zhang, 2024) first detect all candidate interaction pairs and then 
2

feed to CNN network to predict the interaction relationships between 
candidate human–object pairs. Most two-stage detection models use 
existing object detection models and prioritize improving interaction 
prediction models. FCL (Hou et al., 2021b) proposed an object fab-
ricator to generate effective object representations, which were then 
combined with verbs to compose new HOI samples, thus increasing 
the diversity of training data. UPT (Zhang, Campbell, & Gould, 2022) 
applied a unary-pairwise transformer to represent each target’s instance 
details as unary and pairwise representations. In comparison to two-
stage methods, one-stage solutions (Kim, Jung & Cho, 2023; Kim, 
Lee, Kang et al., 2021; Liao et al., 2022; Liu et al., 2022; Wu et al., 
2023; Yang, Zou, Zhang, Cao, & Chen, 2022; Yuan et al., 2022; Zhou 
et al., 2022) captured context information during the early stage of 
feature extraction, leading to improved HOI detection performance. 
The success of DETR (Carion et al., 2020) has inspired many researchers 
in studying HOI detection QPIC (Tamura, Ohashi, & Yoshinaga, 2021) 
applied additional detection heads and relied on a bipartite graph 
matching algorithm to locate HOI instances and identify interactions. 
EOID (Wu et al., 2023) developed a teacher-student model and de-
signed a two-stage Hungarian matching algorithm. RR-Net (Yang et al., 
2022) introduced a relation-aware frame to build progressive structure 
for interaction inference, which imitates the human visual mechanism 
of recognizing HOI by comprehending visual instances and interactions 
coherently. HOICLIP (Ning, Qiu, Liu, & He, 2023) proposed a new 
transfer strategy that used visual semantic algorithms to represent 
verbs. Our work belongs to a one-stage end-to-end approach to study 
HOI detection.

2.2. Vision-and-language pre-training

The advanced vision-and-language pre-training (VLP) multimodal 
learning framework can acquire generalized multimodal representa-
tions from large-scale image and text data (Li, Zhang et al., 2022). 
It has a wide application in the fields of multimodal retrieval (Dz-
abraev, Kalashnikov, Komkov, & Petiushko, 2021; Li et al., 2024), 
visual and language navigation (Anderson et al., 2018), image descrip-
tion (Jin, Cheng, Shen, Chen, & Ren, 2021), and so on. Through effec-
tive cross-modal semantic alignment, particularly fine-grained semantic 
alignment, VLP contributes to cross-modal learning and generalization. 
Visual–language models succeed in enabling zero-shot open-vocabulary 
tasks from natural language supervision (Gu, Lin, Kuo, & Cui, 2021), 
which inspires us to apply visual–language models for zero-shot HOI 
detection tasks.

2.3. Zero-shot HOI

Zero-shot HOI detection aims to generalize to unseen HOI categories 
during training effectively. Since the majority of HOI exhibit a long-
tail distribution, attributed to the compositional nature of HOIs, prior 
research (Hou, Yu, Qiao, Peng, & Tao, 2021a; Hou et al., 2021b; Liu, 
Yuan and Chen, 2020; Peyre, Sivic, Laptev, & Schmid, 2019; Radford 
et al., 2021; Yuan et al., 2022) on zero-shot HOI detection focuses on 
transferring knowledge from known HOI concepts to unseen classes. 
They can be categorized into three scenarios: unseen object, unseen 
action, and unseen combination. There exist primarily two research 
streams for addressing this task. One stream (Hou et al., 2021a, 2021b; 
Liu, Yuan et al., 2020) employed a combined learning approach for 
zero-shot HOI detection, which entailed separating HOI representations 
and combining known features to identify unseen HOI concepts. Con-
sNet (Liu, Yuan et al., 2020), for instance, constructed a consistency 
graph with both visual features of potential human–object pairs and 
word embeddings of HOI labels. With the advancement of multimodal 
learning, there is a growing interest in transferring knowledge from 
pre-trained visual language models, e.g. CLIP is used to extract text 
embeddings of HOI descriptions for HOI detection tasks (Radford et al., 
2021). RLIP (Yuan et al., 2022) proposed a transferable HOI detector 
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Fig. 2. Overview of KI2HOI pipeline. It consists of four parts: visual encoder, verb feature learning, instance interactor, and interaction semantic representation (ISR). Given an 
image, firstly, we obtain the feature map through the backbone and then use our dedicated visual encoder to extract contextual global features. The instance interactor injects 
CLIP spatial information and global features to locate human–object pairs and classify object categories. In the verb feature learning module, associated verb queries are fed to 
the verb extraction decoder to obtain fine-grained verb features. The interaction semantic representation model inputs the verb features and the interaction features from encoders 
to extract the interaction representation.
via natural language supervision. Building upon GEN-VLKT (Liao et al., 
2022), HOICLIP (Ning et al., 2023) mapped image and text encodings 
to a joint visual-semantic space, to capture their correlations and 
effectively transfer knowledge from CLIP. Our work seeks to explore 
a more effective framework to make full use of CLIP for improving 
zero-shot HOI detection performance.

3. Methods

In this section, we introduce the details of the proposed framework 
that utilizes a pre-trained VLM for vision–language integration in zero-
shot HOI detection. In Section 3.1, the overall architecture is presented. 
In Section 3.2, we introduce our visual encoder and a strategy for 
enhancing global feature extraction. Section 3.3 presents verb feature 
learning based on verb queries. In Section 3.4, we design an interaction 
semantic representation for transferring knowledge to HOI detection. 
Section 3.5 describes the training and inference procedures of our 
model.

3.1. Overall architecture

As shown in Fig.  2, our model consists of four primary components: 
visual encoder, verb feature learning, instance interactor, and inter-
action semantic representation. Given an input image 𝑰 , we initially 
extract feature maps via the backbone DETR (Carion et al., 2020). 
The feature maps are subsequently input into the ho-pair encoder to 
generate global visual feature 𝑽 𝑔 , similar to GEN-VLKT (Liao et al., 
2022). Human query 𝑸ℎ and object query 𝑸𝑜 are inputted into the 
instance interactor to compute the mean for both types of queries in the 
corresponding decoder layer. These outputs queries in the last decoder 
are then fed to classifiers which initialize by label’s text weights from 
CLIP to predict the interacting human bounding box 𝑩ℎ∈R𝑁×4 and 
object bounding box 𝑩𝑜∈R𝑁×4, where 𝑁 is the number of queries, and 
object class 𝑪𝒐∈R𝑁×𝐶 , where 𝑪 denotes the object category.

Furthermore, verb queries are associated to interaction categories. 
For example, humans are more likely to catch or play sports ball than 
to bite a sports ball. To reflect this characteristic of HOIs, such queries 
interact with global visual features and become interaction-specific 
queries, as auxiliary information. We extract the spatial features 𝑽 𝑠𝑝
from the pre-trained CLIP visual encoder as memory and feed into the 
interaction representation decoder by the cross-attention mechanism 
to augment the interaction representation and recognition. Finally, 
the HOI prediction categories are generated by the output of a linear 
classifier. The details of each component are explained in the following 
sections.
3

Fig. 3. Structure of ho-pair encoder. The local encoder is specifically engineered to 
encode efficient local characteristics, followed by 3 × 3 depth-wise convolution and 
two 1 × 1 convolutions for channel blending. The global context former is intended to 
capture comprehensive local–global representations by extracting local features from 
the local convolutional layers, an efficient additive attention module, and linear layers.

3.2. Visual encoder

Visual encoder employs the shared frozen backbone of DETR (Car-
ion et al., 2020). Given an image input, the visual feature map from the 
ResNet-50 is projected via a convolutional layer to obtain a 𝐶 channel 
feature map. Then, we embed the feature map adding cosine position 
embeddings following exit works for subsequent tasks. Existing en-
coders are limited to processing feature maps and position embeddings, 
often overlooking regions that contain contextual features essential for 
reasoning interactions. To fully harness the benefits of capturing global 
features, we propose the ho-pair encoder module, as depicted in Fig.  3. 
The ho-pair encoder consists of a local encoder and a global context 
former. This module incorporates a global context saliency-enhanced 
token mixing method, which aims to improve the model’s ability to 
integrate and process visual context information. 

We resize the cropped feature map to a 7 × 7 grid using ROI-Align 
and then feed them into the ho-pair encoder to acquire comprehensive 
local–global contextual information, Firstly, the feature map 𝑽 𝑓  is 
input into the local encoder for local feature extraction. The resulting 
feature map is fed into an efficient additive attention block after passing 
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Fig. 4. Structure of interaction representation decoder. The interaction representation 
decoder commences with interaction queries 𝑄𝑖𝑛𝑡𝑒𝑟. These are initially processed by 
a multi-head self-attention block to capture internal relationships. Then, in a multi-
head cross-attention block, the queries are combined with global visual features 𝑉𝑔 and 
visual–spatial features 𝑉𝑠𝑝 to enrich the interaction representation. Finally, the outputs 
are concatenated with the verb features 𝑉𝑣𝑒𝑟𝑏 before being fed into the feed-forward 
network.

through convolutional layers, thereby enriching the feature representa-
tion with contextual awareness. To be specific, 𝑽 𝑓  is transformed into 
a query (𝑄) and key (𝐾) with matrices 𝑊𝑞 ,𝑊𝑘 ∈ R(𝑑×𝑑) (where n is 
the token length and d is the embedding vector dimension). The query 
matrix 𝑄 multiplies a learnable vector 𝑊𝑎 ∈ R𝑑 to get the attention 
weights of the query, yielding a global attention query vector 𝑎 = 𝑄 ⋅
𝑊𝑎∕

√

𝑑 in R𝑛. Next, 𝑄 is multiplied by trainable weights and pooled for 
global queries. Then, it is element-wise multiplied by the broadcasted 
global queries, generating the global context representation. Inspired 
by the transformer architecture, we use a linear transformation layer 
for query–key interactions to obtain the hidden token representation. 
The output of the efficient additive attention can be described as: 
𝑽 ′

𝒇 = 𝑄̂ + 𝐿(𝐾 ∗ 𝑞) (1)

where 𝑄̂ denotes to the normalized query matrix, 𝐿 denotes to the 
linear transformation.

Finally, the output global features 𝑽 𝑔 is processed via a linear block, 
comprising two 1 × 1 Conv layers, a normalization layer, and GeLU 
activation. The ho-pair encoder is defined as: 
𝑽 ′

𝒇 = 𝐶𝑜𝑛𝑣1(𝐷𝑊𝐶𝑜𝑛𝑣3(𝐵𝑁(𝑽 𝒇 ))) + 𝑽 𝒇 , (2)

𝑽 ′
𝒇 = 𝐴𝐴𝑡𝑡𝑛(𝑽 ′

𝒇 ) + 𝑽 ′
𝒇 (3)

𝑽 𝒈 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑄𝐾(𝑽 ′
𝒇 ) + 𝑽 ′

𝒇 ). (4)

where 𝐶𝑜𝑛𝑣1,3 denotes 1 × 1, 3 × 3 Conv layer, 𝐵𝑁 denotes to Batch 
Normalization, followed by GeLU, and AAttn denotes the efficient 
additive attention.

3.3. Verb feature learning

Inspired by the Query2Label (Liu et al., 2021), we establish a novel 
approach termed learnable interaction-specific query, where 𝑸𝒗∈R𝑁×𝐴, 
A is the number of interaction categories. 𝑸𝒗 differs from traditional 
transformer queries by establishing a one-to-one correspondence be-
tween each query and a particular instance throughout the training 
and inference phases. Such queries interact with global visual feature 
𝑽  through a verb extraction decoder and become interaction-specific 
4

𝒈

queries. We design a self-attention and multi-head attention combina-
tion module and a feed-forward network (FFN) layer as verb extraction 
decoder, consisting of two layers. A set of verb queries 𝑸𝒗 aggregates 
the global feature information 𝑽 𝒈 through verb extraction decoder and 
is updated to 𝑽 𝑣𝑒𝑟𝑏. In this way, the queries are learned to capture 
the verb priors and become good feature representations for these 
interactions. namely: 
𝑽 𝑔 = selfAtten(𝑽 𝑔), (5)

𝑽 𝑣𝑒𝑟𝑏 = MultiheadAttn(𝑽 𝑔 ,𝑸𝑣), (6)

𝑽 𝑣𝑒𝑟𝑏 = FFN(𝑽 𝑣𝑒𝑟𝑏). (7)

3.4. Interaction Semantic Representation (ISR)

Conventional HOI detection uses an Interaction Classification Head 
to predict the confidence of each action for each pair of interactions and 
to judge the interaction. If the training sample for one of the actions is 
assumed to be too few or non-existent, the prediction for that action 
will be very inaccurate. This situation is more obvious in the zero-shot 
learning tasks, which is one of the reasons why traditional methods fail 
in the field of zero-shot learning. HOI detector maps visual features and 
tag-generated text features into the same space through CLIP, which 
performs quite well in the zero-shot learning tasks. We design the HOI 
labels and object labels are represented as ‘‘A photo of a person [verb] 
a/an [object]’’ and ‘‘A photo of a/an [object]’’ to assign different tokens 
to each HOI instance. To fully explore the CLIP knowledge, we propose 
to retrieve the text embeddings from the CLIP to better align them with 
the prior knowledge in the classifier weights.

Interaction Representation Decoder. We introduce an interac-
tion semantic representation (ISR) module to extract the interactive 
representations of human–object interaction pairs. First, We add a 
learnable position guided embedding 𝑷∈R𝑁×𝐶 for human queries and 
object queries, viz., 𝑸ℎ∈R𝑁×𝐶 and 𝑸𝑜∈R𝑁×𝐶 at the same position as 
interaction pairs. We compute the interaction queries 𝑸𝑖𝑛𝑡𝑒𝑟∈R𝑁×𝐶 by 
taking the average of the concatenation of 𝑸ℎ and 𝑸𝑜. That is: 

𝑸𝑖𝑛𝑡𝑒𝑟 = Cat(𝑸ℎ + 𝑷 ,𝑸𝑜 + 𝑷 )∕2. (8)

To guide interaction queries 𝑸𝑖𝑛𝑡𝑒𝑟 to explore informative regions in 
both 𝑽 𝑔 and 𝑽 𝑠𝑝, where 𝑽 𝑠𝑝 represents the semantically aligned visual–
spatial features obtained by feeding the image into the image encoder 
of CLIP, we design an interaction representation decoder with multiple 
cross-attention, as shown in Fig.  4. Each decoder consists of an attention 
block, a self-attention block, and a forward feedback network. 𝑸𝑖𝑛𝑡𝑒𝑟 is 
first input to the self-attention block and the corresponding output is 
fed into the cross-attention mechanism with 𝑽 𝑔 and 𝑽 𝑠𝑝. Subsequently, 
the final output is: 
𝑸𝑖𝑛𝑡𝑒𝑟 = MHSA(𝑸𝑖𝑛𝑡𝑒𝑟), (9)

𝑸′
𝑖𝑛𝑡𝑒𝑟 = MHCA(𝑸𝑖𝑛𝑡𝑒𝑟,𝑽 𝑠𝑝), (10)

𝑸𝑖𝑛𝑡𝑒𝑟′′ = MHCA(𝑸𝑖𝑛𝑡𝑒𝑟,𝑽 𝑔), (11)

𝑸𝑖𝑛𝑡𝑒𝑟 = FFN(𝑸′
𝑖𝑛𝑡𝑒𝑟 +𝑸′′

𝑖𝑛𝑡𝑒𝑟), (12)

where MHSA denotes a multi-head self-attention operation and MHCA 
denotes a multi-head cross-attention operation. Since, the obtained 
𝑸𝑖𝑛𝑡𝑒𝑟∈R𝑁𝑞×𝐶 integrates the knowledge of CLIP and visual features, 
enabling the detection of fine-grained HOI.

By leveraging object and human information from the instance 
Interactor, we can concatenate interaction representations from the 
spatial feature map of CLIP and visual features from the detector 
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Table 1
Comparison with state-of-the-art methods on HICODET. All methods utilize the ResNet-50 backbone network. The 
letters in the Extra column indicate the extra input features: T (Linguistic features of label semantic embeddings), 
X (No extra features) (see Lei et al., 2023; Li, Liu, Wu, Li, & Lu, 2020; Tu et al., 2022; Zhang, Campbell & Gould, 
2021; Zhang, Liao et al., 2021; Zheng, Xu, & Jin, 2023).
Method Extra mAP default mAP know object

Non-Rare Full Rare Non-Rare Full Rare

IDN (Li et al., 2020) x 23.36 22.47 23.63 26.43 25.01 26.85
HOTR (Kim, Lee, Kang et al., 2021) x 25.10 17.34 27.42 – – –
ATL (Hou et al., 2021a) x 28.53 21.64 30.59 31.18 24.15 33.29
QPIC (Tamura et al., 2021) x 29.07 21.85 31.23 31.68 24.14 33.93
FCL (Hou et al., 2021b) x 29.12 23.67 30.75 31.31 25.62 33.02
SCG (Zhang, Campbell et al., 2021) x 31.33 24.72 33.31 34.37 27.18 36.52
UPT (Zhang et al., 2022) x 31.66 25.94 33.36 35.05 29.27 36.77
CDN (Zhang, Liao et al., 2021) x 31.78 27.55 33.05 34.53 29.73 35.96
Iwin (Tu et al., 2022) x 32.03 27.62 34.14 35.17 28.79 35.91
Liu et al. (2022) x 33.51 30.30 34.46 36.28 33.16 37.21
GEN-VLKT (Liao et al., 2022) T 33.75 29.25 35.10 36.78 32.75 37.99
ADA-CM (Lei et al., 2023) x 33.80 31.72 34.42 – – –
OpenCat (Zheng et al., 2023) T 32.68 28.42 33.75 – – –
HOICLIP (Ning et al., 2023) T 34.69 31.12 35.74 37.61 34.47 38.54
KI2HOI T 34.20 32.26 36.10 37.85 35.89 38.78
Table 2
Comparison with state-of-the-art methods on V-COCO dataset. – representative cannot be found 
from te original paper.
Method Detector Backbone V-COCO

𝐴𝑃 𝑆1
𝑟𝑜𝑙𝑒 𝐴𝑃 𝑆2

𝑟𝑜𝑙𝑒

IDN (Li et al., 2020) COCO ResNet-50 53.3 60.3
HOTR (Kim, Lee, Kang et al., 2021) HICO-Det ResNet-50 55.2 64.4
ATL (Hou et al., 2021a) COCO ResNet-50 – –
QPIC (Tamura et al., 2021) HICO-Det ResNet-50 58.8 61.0
FCL (Hou et al., 2021b) COCO ResNet-50 52.4 –
SCG (Zhang, Campbell et al., 2021) COCO ResNet-50-FPN 54.2 60.9
UPT (Zhang et al., 2022) COCO ResNet-50 59.0 64.5
CDN (Zhang, Liao et al., 2021) HICO-DET ResNet-50 62.3 64.4
Iwin (Tu et al., 2022) HICO-Det ResNet-50-FPN 60.5 –
Liu et al. (2022) COCO ResNet-50 63.0 65.2
GEN-VLKT (Liao et al., 2022) HICO-Det ResNet-50+ViT-B 62.4 64.4
ADA-CM (Lei et al., 2023) COCO ResNet-50+ViT-B 56.1 61.5
OpenCat (Zheng et al., 2023) – 61.9 63.2
HOICLIP (Ning et al., 2023) HICO-Det ResNet-50+ViT-B 63.5 64.8
KI2HOI HICO-Det ResNet-50+ViT-B 63.9 65.0
to efficiently retrieve corresponding interaction representations and 
achieve strong generalization capabilities.

Verb Predictor via Knowledge Retrieval. To align verb features 
𝑉𝑣𝑒𝑟𝑏 with 𝑄𝑖𝑛𝑡𝑒𝑟, we first use a projection operation to map both into 
the CLIP feature space. Subsequently, 𝑄𝑖𝑛𝑡𝑒𝑟 is passed through a light-
weight adapter designed for alignment with the verb features. Then, 
we connect 𝑄𝑖𝑛𝑡𝑒𝑟 and 𝑉𝑣𝑒𝑟𝑏 to form a comprehensive interaction feature 
representation. Finally, the verb score is obtained as: 

𝑸𝑖𝑛𝑡𝑒𝑟 = Proj(𝑸𝑖𝑛𝑡𝑒𝑟),𝑽 𝑣𝑒𝑟𝑏 = Proj(𝑽 𝑣𝑒𝑟𝑏), (13)

𝑪𝑣𝑒𝑟𝑏 = MLP(𝑽 𝑣𝑒𝑟𝑏),𝑫𝑣𝑒𝑟𝑏 = MLP(𝑸𝑖𝑛𝑡𝑒𝑟), (14)

𝑪𝑣𝑒𝑟𝑏 = Cat(𝑪𝑣𝑒𝑟𝑏,𝑫𝑣𝑒𝑟𝑏), (15)

𝑺𝑣𝑒𝑟𝑏 = 𝑪𝑣𝑒𝑟𝑏𝑾 𝑻
𝑣 . (16)

where the verb score is computed by the cosine similarity between the 
verb features and the text weight of the verb representations. As well, 
a reconstruction loss function that quantifies the dissimilarity between 
features. That is: 

𝑳𝑟𝑒 = 𝐿1(𝑸𝑖𝑛𝑡𝑒𝑟,𝑽 𝑠𝑝). (17)

where 𝐿1 loss is used to minimize the distance between features and 
visual embeddings.
5

3.5. Training and inference

Training. We employ the Hungarian algorithm (Liao et al., 2022; 
Ning et al., 2023; Wu et al., 2023) for bipartite matching between 
predictions and ground truths. The matching cost consists of human 
bounding box regression loss 𝑳𝑏ℎ, object bounding box regression loss 
𝑳𝑏𝑜, interaction-over-union loss 𝑳𝑢, and classification loss 𝑳𝒄 . Com-
bined with the reconstruction loss function 𝑳𝒓𝒆, the final loss function 
is as follows: 
𝑳 = 𝜆𝑏ℎ𝑳𝑏ℎ + 𝜆𝑏𝑜𝑳𝑏𝑜 + 𝜆𝑢𝑳𝑢 + 𝜆𝑐𝑳𝑐 + 𝜆𝑟𝑒𝑳𝑟𝑒, (18)

where 𝜆𝑏ℎ, 𝜆𝑏𝑜, 𝜆𝑢, 𝜆𝑐 , 𝜆𝑟𝑒 are hyper-parameters for adjusting the 
weights of all losses.

Inference. Reconstruction loss is only used for training, 𝑺ℎ ∈
[0, 1]𝑁 , 𝑺𝑜 ∈ [0, 1]𝑁 . In inference, the final score 𝑺𝑓𝑖𝑛𝑎𝑙 ∈ [0, 1]𝑁  is 
summed by 𝑺ℎ, 𝑺𝑂 and 𝑺𝑣𝑒𝑟𝑏. 

𝑺 𝑖
𝑓 𝑖𝑛𝑎𝑙 = 𝑺ℎ + 𝑺𝑜 + 𝑺𝑣𝑒𝑟𝑏, 𝑖 ∈ [1, 𝑐]. (19)

4. Experiments

4.1. Experimental setup

Datasets. We evaluate our model on two widely-uesd benchmarks, 
HICO-DET (Chao, Liu, Liu, Zeng, & Deng, 2018) and V-COCO (Gupta & 
Malik, 2015). HICO-Det contains 47,776 images, of which 38,118 and 
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Table 3
Performance comparison for zero-shot HOI detection on HICO-DET. RF-UC indicates 
rare first setting, and NF-UC represents non-rare first unseen combination setting. UC, 
UO, and UV denote unseen composition, unseen object, and unseen verb settings, 
respectively (see Bansal, Rambhatla, Shrivastava, & Chellappa, 2020; Hou, Peng, Qiao, 
& Tao, 2020; Hou, Yu, & Tao, 2022).
Method Type Full Seen Unseen

VCL (Hou et al., 2020) RF-UC 21.43 24.28 10.06
ATL (Hou et al., 2021a) RF-UC 21.57 24.67 9.18
FCL (Hou et al., 2021b) RF-UC 22.01 24.23 13.16
SCL (Hou et al., 2022) RF-UC 28.08 30.39 19.07
RLIP (Yuan et al., 2022) RF-UC 30.52 33.35 19.19
EoID (Wu et al., 2023) RF-UC 29.52 31.39 22.04
GEN-VLKT (Liao et al., 2022) RF-UC 30.56 32.91 21.36
HOICLIP (Ning et al., 2023) RF-UC 32.99 34.85 25.53
KI2HOI RF-UC 34.10 35.79 26.33

VCL (Hou et al., 2020) NF-UC 16.22 18.52 18.06
ATL (Hou et al., 2021a) NF-UC 18.25 18.78 18.67
FCL (Hou et al., 2021b) NF-UC 18.66 19.55 19.37
SCL (Hou et al., 2022) NF-UC 24.34 25.00 21.73
RLIP (Yuan et al., 2022) NF-UC 26.19 27.67 20.27
GEN-VLKT (Liao et al., 2022) NF-UC 23.71 23.38 25.05
EoID (Wu et al., 2023) NF-UC 26.69 26.66 26.77
HOICLIP (Ning et al., 2023) NF-UC 27.75 28.10 26.39
KI2HOI NF-UC 27.77 28.31 28.89
FG (Bansal et al., 2020) UC 12.26 12.60 10.93
ConsNet (Liu, Yuan et al., 2020) UC 19.81 20.51 16.99
EoID (Wu et al., 2023) UC 28.91 30.39 23.01
HOICLIP (Ning et al., 2023) UC 32.99 34.85 25.53
KI2HOI UC 34.56 35.76 27.43
FCL (Hou et al., 2021b) UO 19.87 20.74 15.54
ATL (Hou et al., 2021a) UO 20.47 21.54 15.11
GEN-VLKT (Liao et al., 2022) UO 25.63 28.92 10.51
HOICLIP (Ning et al., 2023) UO 28.53 30.99 16.20
KI2HOI UO 28.84 31.70 16.50
ConsNet (Liu, Yuan et al., 2020) UV 19.04 20.02 14.12
GEN-VLKT (Liao et al., 2022) UV 28.74 30.23 20.96
EoID (Wu et al., 2023) UV 29.61 30.73 22.71
HOICLIP (Ning et al., 2023) UV 31.09 32.19 24.30
KI2HOI UV 31.85 32.95 25.20

9658 images are used for training. It includes 600 HOI triplets, where 
138 triplets are rare categories less than 10 training instances, and the 
remaining 462 categories are non-rare. HICO-Det also provides a zero-
shot detection setting by holding out 120 rare interactions. V-COCO is 
a subset of the COCO dataset and consists of 10,396 images, with 5400 
for training and 4964 for testing. It has 29 action categories, including 
4 annotations without any interaction with objects.

Zero-shot Data Setups. We conduct experiments on the HICO-Det 
for zero-shot HOI detection, mainly using the following approaches: 
Rare First Unseen Combination (RF-UC), Non-rare First Unseen Com-
bination (NF-UC), Unseen Verb (UV), Unseen Object (UO) and Unseen 
Combination(UC). In the UC setting, the training data includes all 
categories of objects and verbs but lacks some HOI triplet categories. 
We assess 120 unseen categories and 480 seen categories out of a total 
of 600 categories. The RF-UC selects the tail HOIs as unseen categories, 
whereas the NF-UC prefers head categories. In the UO setting, we select 
12 unseen objects out of a total of 80 objects to define unseen HOIs. 
Additionally, we introduce a UV setting, where 20 verbs from a total of 
117 verbs are randomly selected to construct 84 unseen and 516 seen 
HOIs.

Evaluation Metric. We evaluate our model using the mean Average 
Precision (mAP) as metric, a prediction is considered as true positive 
if the predicted human and object bounding boxes have an IoU of at 
least 0.5 with the ground truth, and the predicted interaction category 
matches the correct category. We report the standard mAP for HOI 
detection, dividing interactions into non-rare, rare, and unseen cases 
based on their occurrences in the training set. The mAP measures HOI 
detection performance with a threshold of 0.5 for the IoU between 
predicted and ground-truth bounding boxes.
6

Implementation Details. We use pre-trained DETR with ResNet-
50 as the backbone network. The visual encoder is based on ViT-32/B 
CLIP, and during training, the parameters of CLIP remain unchanged. 
Our model’s encoder and decoder have 3 layers with 64 queries, except 
the verb extraction decoder has 1 layer. We train the model using the 
AdamW optimizer with a specified interval for adjusting the learning 
rate. The training epochs is set to 90, with a gradual decrease in the 
learning rate after the 60th epoch. All experiments are conducted with 
a batch size of 32 on 8 NVIDIA A6000 GPUs.

4.2. Effectiveness for HOI detection

Zero-shot Detection. We conduct various zero-shot setting experi-
ments on the HICO-DET dataset, and the results are shown in Table  3. 
Our model outperforms existing state-of-the-art methods, demonstrat-
ing strong performance competitiveness. Specifically, under the RF-UC 
and NF-UC settings, our model’s relative mean average precision (mAP) 
for unseen categories exceeds that of EoID (Wu et al., 2023) by 23.26% 
and 7.91%, respectively. In the UA setting, our model outperforms the 
latest work, HOICLIP (Ning et al., 2023), with a 1.03 mAP improvement 
for unseen types. In both full and unseen categories, our model achieves 
1.07 and 2.5 mAP improvements relative to EOID (Wu et al., 2023). In 
the case of unseen objects, our model’s performance surpasses that of 
GEN-VLKT (Liao et al., 2022) by 3.21 mAP.

Fully Supervised Detection. To verify the generalization ability of 
the model, we conducted fully supervised experiments on HICO-DET 
and V-COCO. As tabulated in Table  1, our model achieves remarkable 
performance, exceeding GEN-VLKT and HOICLIP (Ning et al., 2023) by 
3.01 mAP and 1.14 mAP for full categories, and by 1 mAP and 0.36 
mAP for rare categories. This indicates that our model can handle the 
long-tailed distribution of HOI well. As tabulated in Table  2, we achieve 
63.9 role AP on Scenario 1 and 65.0 role AP on Scenario 2 surpassing 
previous methods for the V-COCO dataset.

Robustness to Distributed Data. We investigate the robustness of 
the proposal under different data quantities. We decrease the propor-
tion of training data from 100% to 15%, and we seek to achieve less 
performance loss in HOI detection. Compared to the state-of-the-art 
GEN-VLKT in Table  4, the proposed method achieves competitive per-
formance in detecting both non-rare and rare categories. Furthermore, 
Table  4 highlights the improvements achieved by our model at various 
volumes of data. At 25% training data, our model exhibits a 78.41% 
increase in mAP gain for rare HICO-DET.

4.3. Ablation studies

Network Architecture Analysis. We conduct ablation experiments 
for each module on the HICO-DET dataset under the UV setting and the 
results are shown in Table  5. The GEN-VLKT without the knowledge 
distillation component.is regarded as the baseline. First, we examine 
the effect of CLIP and the result shows a 13.8 mAP improvement in 
HOI detection for Unseen categories. Thus, the visual and linguistic 
knowledge extracted by CLIP enable to learn deeper interaction un-
derstanding. Next, we replace the encoder with the proposed ho-pair 
encoder for using fine-grained visual features. As a result, we observe 
that the results come up to 30.99 mAP and 32.02 mAP in the Full and 
Seen categories, respectively. Finally, we add a verb feature learning to 
capture verb-related features, and the performance is further advanced 
to 31.85 mAP in full categories, which demonstrates the necessity of 
verb feature learning in the zero-shot HOI task.

Reconstruction Loss Setting. As shown in Table  6, we compare 
two loss types, i.e., 𝐿1 loss and 𝐿2 loss, as the reconstruction loss. It 
demonstrates that the reconstruction loss is indispensable for making 
knowledge transfer effective. If exclusively employing 𝐿1 loss, our 
model has demonstrated superior performance and achieved 1.05 mAP 
gain, surpassing the performance exhibited by only employing the 𝐿
2
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Fig. 5. Visualization of the HOI detection results. From left to right, column 1: HOI prediction results; column 2: attention maps from Verb Extraction Decoder; column 3: 
attention maps from Interaction Representation Decoder. Images are sampled from the HICO-DET dataset in UV test set.
Table 4
Robustness to different distribution data.

Non-Rare HICO-DET
Percentage 100% 50% 25% 15%

GEN-VLKT 33.75 26.55 22.14 20.40
KI2HOI 34.20 31.25 30.06 27.20
mAP gain (%) +1.3 +19.2 +35.77 +33.3

Rare HICO-DET
Percentage 100% 50% 25% 15%

GEN-VLKT 29.25 18.94 14.04 13.84
KI2HOI 36.10 26.68 25.05 22.51
mAP gain (%) +23.41 +40.86 +78.41 +38.51

Table 5
Network architecture analysis. Ablation studies are con-
ducted on HICO-DET under the Unseen Verb (UV) setting.
Method Full Seen Unseen

Baseline 28.20 30.49 9.57
+CLIP 30.45 31.65 23.37
+Ho-Pair encoder 30.99 32.02 23.96
+Verb feature learning 31.85 32.95 25.20

Table 6
Reconstruction loss setting.
𝐿1 𝐿2 Full Rare Non-Rare

– – 33.31 31.83 35.05
✓ – 34.20 32.26 36.10
– ✓ 34.06 30.65 35.08
✓ ✓ 34.08 30.18 35.24

loss. When combining 𝐿1 and 𝐿2 losses through average summation, 
the performance is still inferior compared to only applying 𝐿1 loss.

Verb Extraction Decoder Layer Selection. We examine the effect 
of verb extraction decoder layer number on the verb features update 
and conduct experiments in the NF-UC setting. In Table  7, we find 
that a single layer exhibits superior performance. While increasing the 
number of layers, there is no consistent improvement.
7

Table 7
The impact of different verb extraction 
decoder layer numbers.
Layers Full Seen Unseen

1 27.77 28.31 28.89
2 26.30 26.70 24.71
3 26.53 26.70 25.07

4.4. Qualitative visualization results

As shown in Fig.  5, we illustrate the characteristics of our model 
by visualizing the attention feature maps of the decoder. Our frame-
work can effectively infer human–object interaction relationships in 
unseen interaction categories. We observe the attention maps from 
the Interaction Representation Decoder focus on a broader range of 
interaction-related regions, while the Verb Extraction Decoder mainly 
emphasizes the interaction target area. Additionally, taking the detec-
tion of ‘‘wash-bus’’, as an example, it indicates that our model is capable 
of perceiving interactions between indirectly connected humans and 
objects. In Fig.  6, we note that our model has the capability to detect 
various types of interactions.

5. Conclusion and limitations

We present a new one-stage framework called K2IHOI to improve 
zero-shot HOI detection through the incorporation of visual–linguistic 
prior knowledge. Within this framework, contextual spatial details 
concerning human–object–human interaction triples are extracted us-
ing the ho-pair encoder, and knowledge-enriched semantic content is 
integrated into the visual model. Moreover, pertinent verb inquiries are 
converted into category representations specific to the interaction, and 
an interaction semantic representation module is integrated to enhance 
the comprehension of interactions. This approach has produced sig-
nificant outcomes on commonly utilized benchmarks. Nevertheless, it 
does possess specific constraints. The incorporation of sizable language 
models such as CLIP during the training phase results in considerable 
computational expenses. Furthermore, the extraction of features from 
multiple branches results in an escalation in memory utilization. To 
tackle these challenges, forthcoming research could investigate meth-

ods for extracting concise yet meaningful features for HOI detection. It 
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Fig. 6. Visualization of different interaction relationships. One vs. One: person interact with a single objects; One vs. Many: person interact with multiple objects; Many vs. 
One: person interact with a single object; Many vs. Many: person interact with multiple objects.
would be beneficial to modify the VLM in various ways to enhance its 
suitability for this task.
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