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Joint-Scnn: Joint Spiking Convolution Network for
Direction of Arrival Estimation

Zhixuan Zhang ", Qi Liu

Abstract—Direction of arrival (DOA) refers to finding direction
information of propagating waves from the received antennas
equipped with several sensors. Recently, we have witnessed an
enrichment of source data prompting us to design more robust
DOA estimator, where artificial neural network (ANN)-based DOA
estimators have shown their superior performance as compared
to the traditional subspace-based DOA estimation methods. How-
ever, these data-driven DOA estimation methods tend to rely on
parameters that are computationally intensive for efficient pro-
cessing/running with the limitation of hardware resources. Thus,
we propose an event-driven spiking neural network (SNN) model,
namely, Joint-Scnn, for DOA in the presence of various imper-
fections, which consists of ANN-based and SNN-based modules
with weights sharing. The former not only contributes to assist
sparse SNN-based module to learn latent information, but also
enhances its robustness via self-learning. The superior estimation
performance and lower power consumption have been verified
via experimental results. The success of Joint-Scnn is partially
attributed to the teacher-student tandem learning scheme.

Index Terms—Direction of arrival, spiking neural network,
tandem learning, transfer learning.

I. INTRODUCTION

IRECTION of arrival (DOA) estimation, as one of the
D central problems in radar localization and tracking appli-
cation, has attracted a lot of research interests over the past
decades. The DOA estimators are commonly used in signal
processing for determining DOA of a signal at a receiver array,
which can be classified into conventional optimal algorithms and
popular deep learning (DL)-based methods.

In the past few decades, traditional DOA algorithms have
been proposed and widely used in various radar communication
fields, including MUSIC [1], ESPRIT [2], Root-MUSIC [3],
MVDR [4], ML [5]. The MUSIC algorithm [1] is one of the most
popular DOA estimation methods, which used the eigenvalue
decomposition of the covariance matrix to estimate the DOAs
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of the sources. [2] proposed a high-resolution DOA estimation
method called ESPRIT, utilizing the rotational invariance prop-
erty of uniform linear arrays to estimate the DOAs of the sources.
In [3], a variant of the MUSIC algorithm called Root-MUSIC,
was designed that estimated the DOASs of the sources by finding
the roots of a polynomial function derived from the covariance
matrix. Then, by minimizing the variance of the beamformer’s
output power under distortionless response constraints, the DOA
of a source was estimated using the MVDR algorithm in [4]. ML
algorithm [5] estimated DOAs of the sources by maximizing the
likelihood function of the received signals.

With the rise of artificial neural networks (ANNSs) and the
increase of the radar sensor data, researchers turn their insights
into neural networks to solve these kinds of massive computing
problems [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16]. In [6], an encoder-decoder framework was proposed to
address the DOA estimation problem, composed of a multi-task
autoencoder to decompose the input into multiple components in
different spatial sub-regions and a series of parallel multilayer
classifiers. In [7], a deep convolution network (DCN) that
learned the inverse transformation, was introduced, where the
columns of the array covariance matrix were formulated as
under-sampled linear measurements of the spatial spectrum,
corrupted by noise. Reference [8] applied a CNN-based method
for the DOA estimation, and estimated the DOAs by discretizing
the spatial domain into grids. In [9], a synthetic dataset for
angle classification was shown under the presence of additive
noise, propagation attenuation, and delay. [10] proposed an
offline and an online DNN approaches for the DOA estimation
in the massive multiple-input multiple-output system. In [11],
multiple CNNs were designed to extract features from the
MUSIC spectrum of the received signal.

Nevertheless, with the development of wider and deeper neu-
ral networks, ANN-based DOA estimators comes at the cost of
computational complexity, which renders to develop robust and
lightweight DOA estimation method. Motivated by the SNNs
as the third generation of neural networks, with the properties
of sparse firing and spike-based information transmission, we
propose to estimate DOAs under the framework of SNNs.
SNNs typically can be categoried into three folds: 1) due to
the discreteness of spikes and the intrinsic non-differentiability
of spike firing function impeding the direct applicability of
the traditional back-propagation (BP), surrogate-based BP al-
gorithm thus can be derived by replacing the spiking func-
tion with differential functions or adding some limitation or
clipping to the BP process [17], [18], [19], [20]. 2) Based on
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spike-timing-dependent-plasticity (STDP) algorithm, SNN
models learn each module separately [21], [22], [23], [24], [25].
3) Different from the above SNN algorithms, the ANN-to-SNN
algorithms assume that SNNs have equal efficiency as the
counterpart ANNs [26], [27], [28]. Our proposal belongs to the
latter.

Recently, a novel ANN-to-SNN algorithm [29] has been
proposed, called spiking tandem learning. Different from other
ANN-to-SNN algorithms, each layer of this framework is com-
posed of an ANN-based module and a weight-sharing spike-
based module with the similar structure. The spike module as
a student is utilized to obtain the exact neural representation,
while the ANN-based module as a teacher is devised to estimate
the surrogate gradients on the spike-train level and helps the
spike-based module to learn, resulting in the lower latency and
almost comparable performance to the counterpart ANN. How-
ever, there are few drawbacks on the spiking tandem learning
algorithm: 1) Due to the character of weight sharing, the error
of the ANN-based module will increase when error exists in the
spike module. To other word, “a bad student will affect on a
worse teacher to some extent”. 2) In the original framework, the
ANN-based module aims to deal with the non-differentiability
problem of spike function, and ignores its self-learning to en-
hance the whole performance.

To address these problems, we propose the Joint-Scnn method
for DOA estimation task. Our work makes the notable contribu-
tions as follows:

¢ To the best of our knowledge, it is the first time to suc-

cessfully apply the SNN model for DOA in the presence
of various imperfections.

® A novel spiking tandem learning framework is proposed,

named Joint-Scnn, to increase the whole performance via
ANN self-learning.

e The proposed Joint-Scnn method enjoys better DOA esti-

mation accuracy as well as lower power consumption.

The remainder of the paper is organized as follows. In
Section II, DOA estimation with imperfections is modeled. The
proposed method is introduced in Section III. In Section IV,
simulation results show that our method outperforms the bench-
marks. Finally, conclusions are drawn in Section V.

II. PROBLEM STATEMENT

Assume that K narrowband far-field signals s(¢) impinge onto
a linear array of M omnidirectional sensors, whose locations
md are described by an integer set D = {Dy, D,,..., Dy},
m € D and d = /2 denotes the half wavelength. The incident
directions of signals are represented by {9k}§: 1- In the presence
of additive Gaussian noise n(t) € C*!, the output of received
array at time instant ¢ is modeled as below:

y(t) = A@®)s(t) +n(t), t =1,...,N (1)

where A(0) = [a;(0),a2(0),...,ax(0)] € CM*E with the
steering  vector a(fy) = [e'P1,evP2, ... e'Pu )T wp =
—j2mdsin(0)/A  and  s(t) = [s1(t),s2(t),...,sx(t)]T €
CHE>! N is the number of snapshots. Assuming that the
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Gaussian noise is distributed with a mean of zero and a certain
variance o2, and all signals are uncorrelated with the noise.

In practice, various imperfections exist in sensor arrays for
real-world radar applications to directly affect ax (6) with devi-
ations [6], such as mutual coupling, sensor position errors, gain
and phase inconsistencies, etc. With the effect of imperfections,
the array output vector is re-written as:

y(t) = A0, ¢)s(t) + (D). )

As for the diversity of array imperfections, it becomes challeng-
ing for traditional optimization methods to completely figure
out these problems together because the resulting optimization
approaches are generally designed based on one specific imper-
fection. The covariance matrix of the output vector array y(¢)
can be expressed as:

R =E{y(t)y" (1)} = AR,A" + 0’1y, ?3)

where Ry = F{s(t)s ()} = diag{o?,03,...,0%}.

As for the massive amount of learnable parameters, deep ANN
is endowed with better capability in fitting training data than
conventional DOA estimators. Similar to [6], following the rules
of RBF [30] and SVR [31] -based methods, we build the off-
diagonal upper right matrix elements R.,,- as the input vector to
feed ANN:

R.,.=[Ri2Ris,...,Rim,Ros, ..., Rov, o, Ry 1, 0]

r = [Real{RL}, Image{Ru}7]" /| Runll2 4)

where Real{-} and Image{-} denote the real and imaginary
components of the complex-valued matrix, respectively. This
is also commonly used by all ANN-based DOA estimation
approaches, which is due to the existence of abundant feature
information in the covariance matrix. The motivation behind (4)
is that bottom left and upper right parts of the covariance matrix
are conjugate, and there exists unknown noise variance laying
on its diagonal elements.

III. METHODOLOGY

In this section, we introduce the proposed model framework
and learning algorithm in detail, respectively.

A. Model Framework

From the viewpoint of energy consumption, we apply the
spike-based computational method to devise a spiking deep con-
volutional neural network model for the task of DOA estimation.
As shown in Fig. 1, the proposed model is composed of an
encode layer, three spiking blocks, and a decoder layer. Details
of the proposed model are described below.

1) Neuron Models: In our proposed neural network model,
there exists two neurons: the ReL.U neuron and the integrate-and-
fire (IF) neuron. ReLLU neurons are frequently built in ANNS,
which directly clip the activation below zero. As a category of
spike neurons, IF neurons are inspired by the spike-based infor-
mation transmission in real biological neurons, used in SNN.
The synaptic transmission from presynaptic to postsynaptic neu-
rons occurs through the positive correlation between the firing
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Fig. 1. Architectures of the proposed neural networks. For each Spiking layer, the ANN-based module and the spike-based module share the weights. It is worth

noting that the ANN-based module is not needed for the inference and 50 time steps is totally required to SNN learning for each frame.

time of presynaptic spikes and their corresponding membrane
potentials. In a simulation time window N, the incoming spikes
to neuron j at layer [ are integrated into subthreshold membrane
potential le per time step t. Therefore, the membrane potential
of neuron j at layer [ is modeled as [24], [28]:

V) =V}t = 1]+ RILt] — 0S[t — 1] 6))

in which I'[t] = Y7, w!7' S [t]+b} and SL[t] = ©(V/[t] )

with the indicator function

1,ifx >0
() = {0, otherwise. ©)

The synaptic weight wé;l contributes to connecting presynaptic
neuron ¢ from layer [ — 1 and bé» is a constant injecting current.
Additionally, S ; [t — 1] denotes the instance of a spike generated
by the afferent neuron i at time ¢, and I}[t] is the resulting
synaptic current from incoming spike sequences. At the arrival
time ¢, the membrane potential le (t) surpasses the pre-specified
threshold ¥ (typically ¥ = 1), triggering the generation of an
action potential, commonly referred to as a spike. That is:

avi()
29, dt
After firing, the le (t) resets to the rest potential V}..s; while
staying at the refractory period for a duration of time. The
synaptic weight, also known as the conductance of a synapse,
varies based on the activities of the presynaptic and postsynaptic
neurons. The ability of the neuron to learn is credited to synaptic

> 0. 7)

plasticity, which is influenced by these activities. Moreover, the
encoding methods can be divided into spike-rate-based related
to spike counts in a time interval, and spike-time-based encod-
ing related to every detail spike time. We introduce our used
encoding method in the next subsection.

2) Encoder Layer & Decoder Layer: The encoder layer and
decoder layer represent the input module and the output module
in our proposed model. The time-dependent input currents are
considered as the real-valued inputs and are directly applied in
(5) atevery time step. This neural encoding approach overcomes
the sampling error of the rate code, thereby facilitating accurate
and prompt inference, as demonstrated in previous studies [17],
[32]. As shown in Fig. 1, the spiking layer receives spike trains
and spike counts as input.

In order to enable pattern classification, the SNN back-end
needs to decode the output spike trains into pattern classes.
Decoding can be achieved from the SNN output layer using
either discrete spike counts or continuous free aggregate mem-
brane potentials (without spiking). The use of free aggregate
membrane potentials results in a smoother learning curve as it
enables the derivation of continuous error gradients at the output
layer [29]. Thus, we take a 1D-convolution layer as the decoder
layer in our proposed model.

3) Spiking Block: The design for the spiking block is in-
spired by the superiority of supplying additional information
via skip-layer connections derived from the residual structure
of ResNet. The spiking block mainly consists of three spiking
layers, namely Conv1, Conv2, and Conv3. Every spiking layer is
composed of a real-valued convolution module and spike-based
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Fig. 2.

convolution module with the sharing parameters (e.g. convolu-
tion kernel), in which the real-valued convolution module works
on completing the parameter training and spike-based convolu-
tion module is responsible for the inference phase (testing or
validating). Conv1 connects Conv2 with the same convolution
kernel, while connecting Conv3 with a 1x1 convolution kernel,
as shown in Fig. 1. Given the input channel in_ch and output
channel out_ch, the input channel of Conv2 and the output
channel of Conv1 and Conv3 are set as out_ch /2.

B. Joint Spiking Tandem Learning

As shown in Fig. 2(a), ANN-based module plays the part
of teacher to supervise SNN-based counterpart to learn on the
assumption that the spike counts from SNN-based module can be
approximated by the real values from ANN-based module. How-
ever, there exists approximation loss to result in performance
degradation especially in the noisy circumstance. Moreover, it
performs not so good to generalize to unseen data drawn from
the same distribution. To address that, as shown in Fig. 2(b), a
learning pathway is designed to independently pass over every
ANN layers via real-valued data . This is motivated by the
multi-task learning mechanism [33] to enhance the robustness.
The main task is to train spike-based module by sharing weights
from ANN-based module, while the related task is to train the
ANN-based module itself.

For DOA estimation problem, our goal is to minimize the
mean squared error (MSE) between actual and estimated out-
puts. Given data x, z,, ..., xny with labels yi,vs, ..., ynN, the
model outputs are denoted as v, 4>, - - ., Y. Then loss function
L sk can be formulated as:

N
X 1 .
Lyse(9,y) = 3 Z 19 — will® ®)

i=1

—* ANN-based Module

— " ANN-based Module
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(a) Original tandem learning in SNN vs (b) our proposed joint tandem learning in SNN.

As mentioned above, to achieve the multi-task learning, the
joint loss function £ ;oin. is applied, where ¢/ and .., represent
the outputs of main task (along the pathway of s’ and c')
and related task (along the pathway of z?), respectively. The
hyperparameter « is equal to 0.9:

£main = ‘CMSE (?jca y) (9)
Lyctated = LrsE (YY) (10)
»Cjoint - aﬁmain + (1 - a)ﬁrelated (11)

As for the highly discrete and non-differentiable nature of
SNNs in spike generation, the error BP method cannot be directly
applicable to the training process. To that end, we apply the
ANN-to-SNN conversion learning rule, namely, weight updat-
ing between ANN and SNN, by spike count approximation.
Next, we compute the spike count from neuron ¢ at layer [ as:

Ny
=St
t=1

To build the relationship between ANN’s activation functions
and SNN’s spike counts, they are connected via shared weights.
This is mathematically modeled by

12)

U

At=p|—r

(13)

in which the aggregated action potential of neuron j in layer [
is written as V} = 7, wl; 'l + 0L N, 9, p and At denote the
firing threshold, the non-linear transformation of ReL.U, and the
time step, respectively. Hence, the approximated spike count aé-
is obtained as:

Ny

1 1
bR go () o
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Algorithm 1: Joint Spiking Tandem Learning.

Input: Spectrum proxy 7; DOA label L; Total epoch
E; Jonit-Scnn F={Encoder layer F,,, spiking blocks
F,,(i=1,2,3), Decoder layer F,.} with parameter O;
Learning rate 7; Hyperparameter «.

Output: Model parameters 5.

for e < 1 to E do
for i < 1 to len(n) do
// Extract training data
z < i), y < L[]
// In encoder layer
50, 2, 2% <« Fen(2) (as in Eq. 5)
// In spiking blocks
for / < 1 to 3 do
‘ SE, CZ, l.é - Fs[(Séil, CZ*I, .Z.Zfl)
end
// In decoder layer
U, Ye < Fde(Sg’ 037 -773)
// Construct loss functions
Lonain < £q.9 with input of 4. and y
Loelated < Fq.10 with input of ¢ and y
Ejoint < aLpain + (1 - a)ﬁrelated (as in Eq. 11)
// Update parameters of Joint-Scnn
QF(_OF'WVQF'Cjoint
Op<0Or

o N R W N -

L e < =
N B W N =D

—_
=)

end
end

Thus, alj can be effectively determined by the ReL.U activation
function in the ANN-based module via inputting the spike
count cﬁ’l and injecting the current aggregated constant ngt
as the bias term. By simplifying the spike generation process, it
becomes feasible to estimate the error gradients at the spike-train
level from those ANN-based modules [29] according to the
tandem learning rule with firing rate instead of spike timings.

The overall process of Joint Spiking Tandem Learning is
shown in Algorithm 1. In a training epoch, spectrum proxy n
as input to Joint-Scnn F is first encoded into spike trains s° and
spike counts ¢ at encoder layer of F obeyed by (5). It notes
that the original 7 is also copied as the one of the output of
encoder layer, namely 29, to pass the ANN-based module of the
first spiking block. Then the resulting three spiking blocks all
receive the spike trains gL spike counts =1 and real-value
output 2~ ! from the previous blocks and output the new spike
trains s¢, spike counts ¢! and real-value output 2%, Besides, the
decoder layer processes the spike counts and real-value output
from the last spiking block and outputs the DOA predictions /.,
1 of spike-based modules and ANN-based modules. Finally, we
construct the loss function using (11) and update parameters of
Joint-Scnn by SGD.

IV. EXPERIMENTAL RESULTS

In this section, we carry out simulations to demonstrate the
predominance of our proposed model over other benchmarks.
The simulations are implemented on PyTorch [34] framework,
in which ANN-based models can be easily constructed and

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 11, NOVEMBER 2024

gradient computation in the training phase can be automatically
finished by its embedding tools. For a fair comparison, we
choose methods in [6] and [7] as benchmarks since their back-
grounds are similar to ours. We first describe the experimental
setting.

A. Experimental Settings

The experimental setup employs an 8-element uniform linear
array (ULA) with half-wavelength inter-element spacing, in
which all simulation parameters are consistent with that de-
scribed in [7]. It should be noted that the numbers of training and
test samples are 15840 and 3960 respectively. Additionally, we
set the dense of DOA grids A¢ as 1. The experiment platform
is a PC with one Intel i7-6700HQ CPU.

In the simulations, the architecture of DNN-DOA [6] is 56-
28-56x6-(37-24-20)x 6, and that of DCN-DOA [7] is 2x 120-
12C25-6C15-3C5-1C3. As illustrated in Fig. 1, our proposed
model is composed of 3 spiking blocks, an encoder layer, and
a decoder layer. Moreover, the encoder is just a no-parameter
transformation method. In spiking blockl, channels of input
and output are set as 2 and 32, respectively, with the kernel
size 31 and padding length 15. For capturing more complex and
higher-dimension features, the output channel of spiking block2
increases to 96. At the same time, to obtain the finer-grained
knowledge, the kernel size of spiking conv2 is reduced to 25,
corresponding to a padding length 12. Then, we set the output
channel of spiking block3 as 32, with kernel size 15 and padding
length 7. Finally, the decoder layer consists of an ordinary
1D-convolution, whose output channel is 1 and kernel size is
1x1. The learning rate used for our proposed model is set as
0.001, and we adopt the Adam [35] as our model optimizer.

B. MSE Recovery During Training and Validation

To evaluate the superiority of the proposed method, the convo-
lution networks in Fig. 1(a), (b), (c), and (d) of [7] and the model
in [6] are compared. They are shorted as DCN-DoA, DCN-tanh,
DNN-relu and DNN-DoA, respectively, and Scnn using original
spiking tandem learning.

Fig. 3 displays the training/testing MSE lversus the number
of epochs of the proposed method. From Fig. 3, we can see that
all approaches converge less than 50 epochs and ours converges
faster than other benchmarks.

C. Spatial Spectra and DOA Estimation

We compare our proposal with the model in Fig. 1(a) of [7]
and the model in [6], namely DCN-DoA and DNN-DoA, re-
spectively, to evaluate the performance of spatial spectra recon-
struction and DOA estimation.

1) Spatial Spectra Reconstruction Estimation: Four groups
of two 0 dB narrowband signals are simulated in the far field
and made to impinge on the array from two different directions
(off the presumed grid). The four groups of signal angles are
[-0.9°,1.0°], [—2.9°,3.0°], [-4.9°,5.0°], and [—8.9°,9.0°].
Besides, we also test over three and four signals, which
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Fig. 3. (a) Training and (b) testing MSE of all networks.

are [—35.9°,—0.9°,24.0°] and [—24.9°, —4.9°,20.0°,45.0°] re-
spectively. The reconstructed spectra are averaged by 10 trials,
where the true signal locations are indicated by the red squares.
The result of this experiment is illustrated in Fig. 4.

In Fig. 4, we can see that both Joint-Scnn, Scnn, and DCN-
DoA achieve accurate DOA estimation at true directions, while
DNN-DoA deteriorates DOA estimation results with many
pseudo peaks, especially when two signals are approaching.
Moreover, when the two signals get closer, our proposed Joint-
Scnn model still remains better recovery results than others with
sharp peaks.

2) DOA Estimation: We further evaluate the effectiveness of
the proposed model for DOA estimation via real-time DOA
estimates and corresponding errors. The DOA settings are set
as {5.5°,13.5°,20.67°,50°,60°,70°}.

As shown in Fig. 5, it is easy to find that Joint-Scnn, Scnn, and
DCN-DoA achieve a better performance than DNN-DoA with
low estimation error. In addition, we observe that the proposed
Joint Scnn outperforms benchmarks with all estimation errors
lower than 2°.

D. RMSE Evaluation Performance

In this subsection, the average root-mean-square error
(RMSE) of all incident signals is leveraged to evaluate the
statistical performance of our proposed model, Scnn, DCN-DoA
and DNN-DoA. The RMSE is defined as follows:

H
1 A
= _E: h_ g2
RMSE = K 2 116 o0 (15)
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Fig. 4. Results of reconstructed spatial spectra with two signals. First row:

—0.9°and 1.0°. Second row: —2.9° and 3.0°. Third row: —4.9° and 5.0°. Fourth
row: —8.9° and 9.0°. Fifth row: —35.9°, —0.9° and 24.0°. Sixth row: —24.9°,
—4.9°,20.0° and 45.0°. (a)(e)(i)(m)(q)(u): Joint-Scnn. (b)(H)(§)(n)(r)(v): Scnn.
(c)(g)(k)(0)(s)(w): Methods from [7]. (d)(h)(1)(p)(t)(x): Methods from [6].

where " is the DOA estimate at the Ath trial, 0 is the ground
truth, H is the number of Monte Carlo trials and K is the number
of signals. We compare the RMSEs of the proposed Joint-Scnn
with those Scnn, DCN-DoA, and DNN-DoA in terms of SNR
and angle separation.

1) RMSE vs SNR: Two signals located at —10.5° and 4.5°
and SNR within [-15 dB, 15dB] are considered, and 1000 inde-
pendent simulations are carried out at each SNR. As illustrated
in Fig. 6(a), ours almost has the lowest RMSE on par with
DCN-DoA and Scnn.

2) RMSE vs Angle Separation: Assume that two signals
with SNR = 0 dB and angle separations within [2°,15°] are
considered. For each angle separation A¢, the signal directions
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Fig.5. Results of DOA estimates and corresponding estimation errors. (a)(b):

Joint-Scnn. (c)(d): Scnn. (e)(f): Methods from [7]. (g)(h): Methods from [6].

are 0° + § and § + A¢, respectively. § is a random variable
uniformly distributed in (0°, 0.2°). Fig. 6(b) shows that our pro-
posed model remains the lowest RMSE with the angle separation
increasing.

E. Power Consumption Verification

As known, SNNs can represent the learned information via
sparse spikes. Thus, we further illustrate the efficiency of the
proposed method with the energy calculation and the heatmaps
of three spike blocks’ outputs, respectively.
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Fig. 6. Statistic Performance. (a) RMSE vs SNR. (b) RMSE vs Angle Sepa-
rations.

1) Energy Calculation: The computational cost of this study
relies on the total number of Floating-Point Operations (FLOPs),
which is analogous to the number of matrix-vector multiplica-
tion operations and exhibits a proportional relationship. Note
that we focus on the energy calculation of the SNN model in
test phase, where every ANN-based module does not work. For
per layer [;, the FLOPs of ANN-based module can be described
by [36],

FLOPsANN_ Modute(li)

_ [E*xO*x Cip % Cout, if I; denotes the convolutional layer,
" Cin X Couy, if I; denotes the linear layer

(16)

where k and O correspond to the sizes of kernel function and
output feature map, respectively. Besides, C;,, and C,,,; repre-
sent the channel numbers of the input and output, respectively.
To compute the FLOPs of spike-based module per spiking layer,
the spiking rate R, ((;) per spiking layer /; since SNN consumes
energy only when firing spikes, can be defined as:

Ru(ly) = #spikes per layer [; over all time steps

17
##neurons per layer [; a7
i.e., the average firing rate per neuron. Therefore, FLOPs for
spike-based module per spiking layer is:

FLOPSSpike_MOdule(li) = FLOPSANN_Module (lz) X Rs (lz)

(18)
Thus, over all layers, the total inference energy consumption for
ANN-based module (EAnN_Module) and spike-based module
(ESpike_Module) are calculated as:

EANN Modute = »_ FLOPSANN odute(li) X Exiac
l;
19

ES’pik:e?Module - ZFLOPSSpikefModule(li) X EAC’ (20)
li

where F' 4, Fyr ac are obtained from a standard 45 nm Comple-
mentary Metal-Oxide—Semiconductor (CMOS) process, viz.,
FEyac =4.6pJ and E o = 0.9pJ for 32 b FP [37].

Note that, as shown in Table 1, both DNN-DOA and DCN-
DOA using simple network architecture perform inferior to ours,
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®

Heatmap of output spike in every spiking block (Scnn vs. Joint-Scnn). (a) Spiking block1 in Scnn. (b) Spiking block1 in Joint-Scnn. (c) Spiking block2

in Scnn. (d) Spiking block2 in Joint-Scnn. (e) Spiking block3 in Scnn. (f) Spiking block3 in Joint-Scnn.

TABLE 1
ENERGY COMPARISON

Model Type Energy(pJ)
DNN-DoA  real-value-based 0.025E+07
DCN-DoA  real-value-based 0.098E+07
Cnn* real-value-based 7.45E+07
Scnn spike-based 2.55E+07
Joint-Scnn  spike-based 1.45E+07

though they have less energy consumption. For fair comparison,
we compare with Cnn, Scnn under the same network architec-
ture, and we can see that the proposed Joint-Scnn outperforms
them in terms of energy consumption. It is observed that, the
energy consumption of Scnn drops by over 65% compared to
that of Cnn*. Furthermore, our proposed Joint-Scnn achieves
over 81% energy saving as compared to Cnn*.

2) Heatmap Comparison: As well known, the sparsity or
firing counts of spike can directly reflect the activation of neurons
within a module. Theoretically, it is expected that the effective
neural networks activate as small and sparse part of neurons
as possible in inference phase, which indicates the low energy
consumption. To this end, the energy consumed by our Joint-
Scnn can be presented by the spike firing heatmap at the output
layer of its three spike blocks. To better visually display, we
use the spike-based visual tool [38] to compute and present the
heatmap. The results of heatmaps are illustrated in Fig. 7. For

each heatmap, its width equals 120 representing the length of
the 1D output features in every spiking block, and its height is
50 representing the length of the time window. In a heatmap,
the color depth of a position denotes the activation of the feature
at a specific time. When the color turns more yellow, it means
that the activation of neurons at this feature position is higher
over the specific time step. It should be noted that the number
of yellow or green positions of a feature in the time dimension
is equal to the spike count of this feature over the whole time
window.

It can be observed that the spike counts of neurons in our Joint-
Scnn mainly locate within the smaller time window [1,10], less
than that of Scnn. It indicates that our proposed model mainly
requires only 10 time steps to represent features in every spiking
block via binary spikes (0 or 1) instead of real-value values.
Besides, from the dimension of feature length, the number of
activated neurons in our Joint-Scnn is obviously much less than
Scnn. Especially on the output of the first and second block, our
Joint-Scnn just activates less than half the neurons. In contrast,
almost all of neurons in Scnn are in active state.

Inherently, at the begining, the neurons on spike-based mod-
ule only enjoy simple addition operation until the accumu-
lated values bypass the threshold, which can be seen from the
computation of R,(l) in (17). Further, the sparse fired spikes
(demonstrated in Fig. 7), as tensors composed of 0 or 1 binary
values, reduce the addition operation by a large margin. Finally,
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our proposed approximation of spike train by real-value spike
count in the whole training process successfully reduces the
high cost as the traditional SNNs. That is also the reason why the
proposed method enjoys lower energy consumption as compared
to Scnn.

V. CONCLUSION

Consider the limitations of the data-driven ANN-based ap-
proaches for the DOA estimation task, we propose an event-
driven spiking neural network (SNN) model via ANN-SNN
weight sharing scheme. Herein, a novel spiking tandem learn-
ing framework is proposed, named Joint-Scnn, to increase the
whole performance via ANN self-learning. Finally, extensive
experiments demonstrate the efficiency of our proposed model
over other approaches in terms of estimation performance and
energy consumption.
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