Interspeech 2022
18-22 September 2022, Incheon, Korea

Knowledge Distillation for In-Memory Keyword Spotting Model

Zeyang Song', Qi Liu®, Qu Yang', and Haizhou Li

3,1,4

!Department of Electrical and Computer Engineering, National University of Singapore, Singapore
2South China University of Technology, China
3The Chinese University of Hong Kong, Shenzhen, China, 4Kriston Al, China

zeyang-song@u.nus.edu, drliugi@scut.edu.cn,

Abstract

We study a light-weight implementation of keyword spotting
(KWS) for voice command and control, that can be imple-
mented on an in-memory computing (IMC) unit with same ac-
curacy at a lower computational cost than the state-of-the-art
methods. KWS is expected to be always-on for mobile de-
vices with limited resources. IMC represents one of the solu-
tions. However, it only supports multiplication-accumulation
and Boolean operations. We note that common feature extrac-
tion methods, such as MFCC and SincConv, are not supported
by IMC as they depend on expensive logarithm computing. On
the other hand, some neural network solutions to KWS involve
a large number of parameters that are not feasible for mobile
devices. In this work, we propose a knowledge distillation
technique to replace the complex speech frontend like MFCC
or SincConv with a light-weight encoder without performance
loss. Experiments show that the proposed model outperforms
the KWS model with MFCC and SincConv front-end in terms
of accuracy and computational cost.

Index Terms: Keyword spotting, knowledge distillation, in-
memory computing, speech encoder, MFCC, SincConv

1. Introduction

Keyword spotting (KWS) is increasingly used in mobile devices
for always-on voice command and control. An effective KWS
system is expected to be accurate, memory and computation
efficient.

The traditional von Neumann computing architecture faces
two common challenges: 1) the disparity between the process-
ing speech of the memory processing units. 2) the high en-
ergy cost of moving data between the memory and processing
units, which is aggravated by big data processing. In-memory
computing (IMC) [1, 2] has been studied to overcome the chal-
lenges, where some computations can be performed and orga-
nized by the memory itself. The computational complexity can
be further reduced when the memory devices are coupled phys-
ically [3]. With a higher computational speed of the memory
and less data movement, we can conduct the KWS task in IMC
more efficiently.

However, IMC research is mainly focused on perform-
ing multiplication-accumulation operations inside the memory-
macro in a highly parallel and efficient manner. The commonly
used audio frontends such as Mel-frequency cepstrum coeffi-
cient (MFCC) and SincConv cannot be implemented directly
via IMC to achieve an adequate performance because of the log-
arithm function. Also, the look-up table technique for logarithm
is energy consuming in IMC implementation compared to ad-
dition or multiplication operations. To address this, we propose
an IMC-friendly encoder to replace the logarithm-based feature
extraction front-end. In addition, we develop a knowledge dis-
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tillation framework to transfer a high performance KWS model
to an IMC-friendly model in a learning process.

2. Related work

The neural solutions to KWS [4, 5] can be grouped into the
pipeline approach and end-to-end approach.

In the pipeline approach, a frontend first extracts features,
such as MFCC, from input audio. Then the extracted features
are fed into the various downstream classifier [4, 5, 6, 7, 8, 9].
The variants of MFCC include log-Mel filter bank energies
(LFBE) [10], the Howl toolkit [11]. On the hardware plat-
form, such as FPGA, MFCC feature extraction can be imple-
mented [12, 13]. However, such implementation usually in-
volves a large amount of computation. As shown in [13], the
MEFCC frontend consumes much more power (2,137.44J) than
the neural network classifier (117uJ) for a two-class KWS task
because Fast Fourier Transform (FFT) is computationally ex-
pensive. As an example, MFCC involves 97.8% and 90.1% of
the execution time on CPU and ARM respectively [14].

The end-to-end approach typically employs a convolutional
layer, in place of FFT implementation, that performs frequency
analysis equivalence. For example, Wav2Vec 2.0 [15] can
achieve state-of-the-art performance in ASR and provide a pow-
erful encoder for several downstream tasks [16]. However, its
vast parameters (about 97.2 million) are not feasible on mobile
devices.

SincNet [17] used a parametrized Sinc-convolutions (Sinc-
Conv) that seeks to benefit from the best of both pipeline and
end-to-end approaches. SincConv is a trainable rectangular
bandpass filter bank used for extracting auditory features from
the frequency domain. In the frequency domain, the rectangular
bandpass filter could be written as the difference between two
low-pass filters, which could be converted to the difference be-
tween two sinc functions (sinc(z) = sin(x)/x) for filters in
the time domain (shown in Eq.1).

gln, f1, f2] = 2f2sinc(2w fan) — 2 fisinc(2w fin) (1)

where f1, f2 separately are learned lower and upper cutoff fre-
quencies for each filter, all sets of f1, f2 are initialized with the
cutoff frequencies of the mel-scale filter bank and then further
trained with two trainable parameters that control the scale and
bandwidth of the filter bank. Then the sinc filters g[n, fi, f2]
are used as the convolutional kernels in the time domain like
other time-domain filter banks.

While SincConv strikes a tradeoff between the number of
parameters and accuracy, mel-scale conversion in SincConv in-
volves a logarithm computing that is unfriendly to IMC imple-
mentation. The look-up table for logarithm can be considered
as a solution to logarithm in hardware implementation, but it is
also expensive on the IMC platform. Each random access to
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Figure 1: The architecture of a SincConv block (teacher) and
a IMC encoder (student). Parameters c, k, s in SincConv and
Convld represent the number of output channels, kernel length,
and stride.

RAMs costs a few orders of magnitude more in terms of energy
and latency than compute operations. DRAM read, for example,
takes around 640 pJ, while computation operations like addition
and multiplication take about 0.1 pJ and 3.1 pJ respectively [18].

This study is motivated to replace the complex speech fron-
tend like MFCC or SincConv with an alternative without per-
formance loss.

3. The Proposed KWS Framework

We study an IMC encoder to serve as the feature extraction fron-
tend as part of the end-to-end model. We will also formulate
a knowledge distillation framework to transfer knowledge from
MEFCC or SincConv to the IMC encoder to benefit from the high
performance teacher model.

3.1. In-memory computing (IMC) encoder

The SincConv encoder [17] is a trainable frontend with only
two parameters, which has been successfully used in energy ef-
ficient neural solutions to KWS [19]. To simplify the logarithm
function in SincConv operation [17] and the logarithm compres-
sion function (y = log(|x|+ 1)) [20, 21] in the SincConv block
(Fig.1 left), we propose the IMC encoder block (Fig.1 right),
which is composed of 1d convolution (viz., Conv1d), activation
function and average pooling.

The proposed IMC encoder is similar to the SincConv
block, except that SincConv and Hamming window are replaced
by the Convld layer. We approximate the logarithm function
with a simple activation function:

y=axlz|/(1L+bxz]),

where a and b are two parameters to approximate the logarithm
function.

There are two ways for estimating the parameters a and
b: 1) we choose a and b with proper values determined
by mean square error between our activation function and
log-compression function to approximate the log-compression
function and then fix them in training. 2) we train a and b to-
gether with a downstream classifier. We consider that the former
can better approximate the log-compression function, while the
latter takes advantage of better fitting input data samples.

3.2. Knowledge distillation

Knowledge distillation [22] is a method used to transfer knowl-
edge from a large teacher model to a small student model that
is suitable for mobile devices and embedded systems. We pro-
pose a knowledge distillation framework, as shown in Fig.2, to
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Figure 2: The IMC encoder as part of the student model in a
teacher-student knowledge distillation framework.

transfer the knowledge from SincConv/MFCC frontend, which
is commonly used and represents good performance, to a com-
putation efficient IMC encoder.

Both the teacher model and student model are composed
of an encoder and a classifier. The teacher model consists of
a MFCC or SincConv frontend, while the student model em-
ploys an IMC encoder as the frontend. MFCC is believed to
reflect the human auditory responses, whose sensitivity varies
on different frequency levels. SincConv is also a parametrized
Sinc-convolutions that can capture audio information in fre-
quency domain. Both MFCC and SincConv perform well in
KWS and speech recognition in general. The knowledge dis-
tillation framework benefits from its high performance speech
feature representation. For the classifier, the teacher and student
models have the same classifier architecture.

We propose to transfer the knowledge from both the en-
coder and classifier of teacher model via feature-based (Loss r)
and response-based (Loss,) distillation loss. The loss functions
are as follows:

LOSSf = MSEloss (Senc: Tenc)
Loss, = D1, (Sout ‘ |To'u.t)
Losscs = CrossEntropy(Sout, label)

Loss = a1 Lossy + aaLoss, + azLosscs

where Senc, Sout, Tenc, Tout are separate output of student and
teacher model from their encoder and classifier, MSEjoss(+)
represents the mean square error loss, and Dx () represents
Kullback Leibler (KL) Divergence. a1, a2, as are the weight-
ing factors for the total loss.

4. Experiments
4.1. Dataset and Settings

Datasets: In our experiments, we use the Speech Commands
version 2 (v2) dataset from Google [23] with data augmenta-
tion and preprocessing methods in [16] to train and evaluate our
model. There are 105,829 one-second utterances classified into
35 different keywords spoken by 2,618 different speakers. For
our task, this dataset has 12 classes for classification: “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, “go”,
unknown, or silence. The remaining 25 keywords out of the
mentioned ten words are labeled as unknown, and other back-
ground noise samples are labeled as silence. In our experiments,
the dataset is divided in a ratio of 8:1:1 for training, validation,
and testing.



Table 1: Performance comparison for different encoders in
terms of Multiply-Accumulate Operations(MACs) and accuracy
(%).

Encoder MACs Accuracy

Convld 4.96M 94.75%

MFCC 8.07M 95.85%

SincConv 5.39M 96.32%

Our IMC 4.96M 96.57 %
Table 2: KWS performance in terms of accuracy (%).
"Encoder:’ indicates the encoder of the teacher model; and

‘a, b’ the parameter estimation techniques of activation func-
tion in the IMC encoder. We refer “Baseline” to the student
model that is trained independently, and refer “After KD” to the
student model after knowledge distillation from the “Teacher”
model.

Encoder; a,b Baseline Teacher After KD
MFCC Fixed 94.24%  95.85% 94.64%
MFCC Trainable 94.75%  95.85% 95.03%

SincConv Fixed 94.24%  96.32% 96.06%

SincConv  Trainable 94.75%  96.32% 96.57%

Experiment settings: In our following experiments, ResNet-8
[24] is used as the default classifier in both the teacher models
and student models. For encoder blocks, number of filters of
SincConv and IMC encoder are selected to be 128. And MFCC
use 128 MFCC features. Parameters c, k, s in SincConv block
and the IMC encoder block are 128, 150 and 62. Both teacher
model and student model are trained by AdamW optimizer with
initial learning rate of le-3 and batch size of 32.

Knowledge distillation framework settings: In knowledge
distillation, we first train the teacher model with MFCC and
SincConv from scratch, then transfer the knowledge of en-
coder and classifier to the student model. When transferring
the knowledge to the student model, the balancing parameters
a1, a2, as are set 0.3, 0.1 and 0.6.

4.2. Results

In Table 1, we compare our proposed IMC encoder with other
encoders in terms of computational cost and accuracy. Note that
all the models in Table 1 use encoders with same number of fil-
ters and classifiers with same architecture (ResNet-8 [24]) for a
fair comparison. In most cases, the energy cost of each opera-
tion is fixed on a certain device, thus the number of MACs can
represent the computation cost of a model. From table 1, our
proposed IMC encoder can not only get rid of the complex log-
arithm operation that is not implementable on the IMC platform
but also outperforms both MFCC and SincConv in terms of ac-
curacy with fewer computational costs. Also, compared with
the Conv1d encoder that is usually used in in-memory comput-
ing, the IMC encoder can achieve better performance.

In Table 2, we compare the accuracy on Speech Commands
v2 dataset over different architectures, where “Fixed” means
a and b are chosen to minimize MSE between the activation
function and log-compression function and are fixed in train-
ing, “Trainable” means that a and b are trainable via back-
propagation.

From Table 2, we have the following observations: (i) The
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Table 3: KWS performance with different knowledge distilla-
tion frameworks. ”Encoder + classifier” refers to the teacher-
student knowledge distillation framework in Fig. 2. ”Encoder”
refers to the framework that only transfers knowledge from the
encoder of the teacher model to the student model.

Encodery KD framework Teacher After KD
MFCC Encoder 95.85% 94.56%
MFCC Encoder + classifier 95.85% 95.03%

SincConv Encoder 96.32% 95.04%

SincConv  Encoder + classifier  96.32% 96.57%

Table 4: KWS performance with weighting factor of KD loss.
Default settings are marked with gray.

weighting factors for the KD loss

o an as Accuracy (%)
0.3 0 0.7 96.45
0.1 0.1 0.8 96.34
0.2 0.1 0.7 96.46
0.3 0.1 0.6 96.57
0.4 0.1 0.5 96.38
0.5 0.1 0.4 96.02
0.1 0.3 0.6 96.29
0.2 0.3 0.5 96.02
0.3 0.3 0.4 95.75
0.4 0.3 0.3 94.97
0.5 0.3 0.2 95.26

student models (baseline), if trained independently, has perfor-
mance lagging behind the teacher models with SincConv and
MEFCC. However, they are on par with or and even outperform
the teacher models through knowledge distillation. (ii) Using
trainable a, b can make the IMC encoder perform better both
before and after knowledge distillation. With additional param-
eter to for activation, the activation value from our IMC encoder
could be consistent with the expected data distribution of fol-
lowing classifier and easy for optimization. (iii) SincConv out-
performs MFCC as the encoder of teacher model. The teacher
model with SincConv frontend not only achieves higher accu-
racy, but also brings about a higher accuracy improvement over
the student model through knowledge distillation than MFCC.

In our knowledge distillation framework in Fig.2, we in-
clude the downstream classifier with the same architecture into
both teacher and student models. In Table 3, we compare its
performance with another knowledge distillation framework. In
the ”Encoder” framework, we only transfer the knowledge from
the encoder of the teacher model to the student model by set-
ting the balancing parameter of KD loss [, a2, a3] to be [1,
0, 0]. Then train the student encoder with the classifier, where
the learning rate of the encoder is smaller than the classifier. As
we can see from Table 3, the IMC encoder can achieve better
performance when training the encoder and classifier together.
Because the encoder is shallow, if we train the encoder and clas-
sifier separately, the encoder may forget the knowledge trans-
ferred from the teacher model when finetuning with the classi-
fier.

There are three parameters a1, a2, g used to weight cost
functions mentioned in Sec 3.2. We compare the KWS perfor-
mance of student models under different weighting factors in
Table 4. Results in Table 4 demonstrate that: (1) Student mod-
els can benefit from the knowledge of teacher encoder since we
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Figure 3: The feature maps from encoders in our knowledge distillation framework. The upper panel and lower panel show the feature
maps and their value distribution. (a) MFCC’s and its student’s encoding feature maps. (b) SincConv’s and its student’s encoding

feature maps.

can see that accuracy increase with cv; when a1 < 0.3. (2)
Putting less importance on the classification task (for example
as < 0.5) can weaken the student model by keeping the stu-
dent encoder focused on imitating the representation from the
teacher model but ignoring the KWS task itself. (3) We found
that classification loss (Loss.;s) can play a better role in opti-
mization than the response-based loss(Loss).

In Table 2, we found that SincConv could outperform
MECC as a teacher model. We also found that in knowledge
distillation the feature-based (Loss ) between the IMC encoder
and MFCC always larger than that between the IMC encoder
and SincConv. So we visualize their feature maps from encoder
of those two knowledge distillation frameworks in Fig.3. It is
evident from the feature maps (upper panel) in Fig.3 that the
IMC encoder taught by teacher model with SincConv (Fig.3 (b)
right) has a more distinct feature map than its MFCC counter-
part (Fig.3 (a) right). And from the feature maps’ value distri-
bution (lower panel) in Fig.3, the IMC encoder model can only
learn some basic features from MFCC. In contrast, the feature
map of the SincConv frontend, which has the shape similar to
the IMC encoder, can be easily imitated. This might be because
the filter banks of SincConv are implemented in time domain ,
while MFCC is an encoding method in the frequency domain.

To further test the encoding performance of our IMC en-
coder, we test the performance of different types of encoders
with two additional classifiers: Fully Convolutional Neural Net-
works(FCNN) [25] and GRU-based RNN model[26]. When
training the IMC encoder in this experiment, we use the Sinc-
Conv teacher and fixed a, b. Hyperparameters of these models
above (including the number and size of each layer, learning
rate, batch size, etc.) are tuned for this task. Table 5 shows
that, IMC encoder models with different classifiers can achieve
comparable performance to MFCC and SincConv, which im-
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Table 5: KWS performance in terms of accuracy(%) with differ-
ent classifier.

Classifier | o Net:8 FCNN  RNN
Encoder
Convid 94.75%  93.47% 93.76%
SincConv 96.32%  95.03% 94.67%
MECC 95.85%  95.19% 94.98%
Our IMC 96.57%  95.24% 94.85%

plies that our IMC encoder can be used to replace MFCC or
SincConv in other models for the keyword spotting task.

5. conclusion

We propose an IMC-friendly KWS encoder and a knowledge
distillation framework. The experiments show that our pro-
posed IMC encoder outperforms KWS model with SincConv
with less computational cost through knowledge distillation.
And when transferring knowledge to the IMC encoder, Sinc-
Conv could be a better encoder of teacher model compared to
MEFCC for its nature of time-domain convolution.
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