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Abstract— In this letter, a gridless one-bit direction-of-arrival
(DOA) estimation approach with one-snapshot is proposed to
be robust against the off-grid errors and sign inconsistency
because of the one-bit measurements corrupted by additive noise.
Different with the existing off-grid DOA estimators, an atomic
norm minimization is considered to mitigate the grid mismatch
with atoms instead of pre-divided discretized dictionary. Then,
the sign inconsistency of one-bit measurements is solved by
introducing a linear loss function. The resulting optimization
problem is convex and can be equivalent to a semidefinite
programming (SDP) problem, which, however, is computa-
tional demanding. Therefore, alternating direction multiplier
method (ADMM) is employed to speed up the implementation.
To avoid the spectrum searching, an effective dual polynomial
method is developed with closed-form solution for DOA esti-
mation. Meanwhile, the proposed method does not require a
prior information of the number of targets. Simulation results
demonstrate the superiority and effectiveness of the proposed
method.

Index Terms— Atomic norm minimization, gridless direction-
of-arrival (DOA) estimation, one-bit quantization, alternating
direction multiplier method (ADMM), sparse recovery.

I. INTRODUCTION

F INDING directions of multiple targets with massive
antenna array is an essential task since its merits of high

spatial resolution and high spectral efficiency are required in
various applications, ranging from sonar, radar, wireless com-
munication and navigation [1]–[5]. However, it is inefficient
for analog-to-digital converters (ADC) during the procedures
of quantization and sampling, as the result of power consump-
tion growing exponentially with sampling bit-depth. There-
fore, how to reduce the hardware complexity becomes fertile
research ground that merits further investigation especially in
massive antenna array systems.

Recently, one-bit quantization becomes an emerging tech-
nology that is attracting the attentions of researchers and
practitioners alike. On the basis of that, the power consumption
of one-bit measurements is significantly reduced. Although
only sign information of the measurements is available after
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one-bit quantization, it has been demonstrated that robust
direction-of-arrival (DOA) estimation can still be guaran-
teed [6], [7]. In [6], one-bit MUSIC is proposed based on
quantized array measurements. In [7], to resolve more sources
than the number of antennas, sparse linear array (SLA) is
considered for DOA estimation with one-bit quantization.
Nevertheless, these one-bit DOA estimation algorithms still
require relatively large number of snapshots to reconstruct the
covariance matrix.

On the other hand, benefit from compressed sensing (CS),
sparse recovery-based DOA estimators perform better perfor-
mance with limit snapshots or even one snapshot, including
fixed-point continuation (FPC) [8] and binary iterative hard
threshold (BIHT) [9]. In [10], the BIHT algorithm is extended
to complexed-valued model for DOA estimation, referred to
complex-valued BIHT (CBIHT). By exploiting the similarities
between one-bit sparse recovery model and classification prob-
lem, a novel one-bit classification model is established, where
support vector machine (SVM) is utilized to extract the DOA
information [11]. In addition, Huang et al. [12] proposed an
improved FPC reconstruction algorithm for DOA estimation.
In [13], a generalized sparse Bayesian learning algorithm
(Gr-SBL) is developed for DOA estimation. Nevertheless,
these one-bit DOA estimators always require a pre-defined
discretized spatial dictionary to estimate DOAs, under the
assumption of targets exactly corresponding to the discretized
dictionary grids. In practical scenarios, the target positions
are not precisely on the grids and thus DOA estimation bias
exists, leading to significant degradation performance. To deal
with off-grid error, several gridless methods are proposed
for DOA estimation with one-bit measurements [14], [15].
However, during the procedures of sampling and transmission,
the sign inconsistency between the measurements before and
after one-bit quantization has a further negative effect on the
estimation accuracy because of the noise.

In this letter, a robust gridless DOA estimator with
one-snapshot is developed on the massive SLA. To achieve the
gridless DOA estimation, a sparse reconstruction model with
one-bit quantization is built based on the atomic norm mini-
mization. Then, a linear loss function is exploited to constrain
the sign inconsistency between the one-bit measurements
and the ground-truth signals. Due to the convexness of the
semidefinite programming (SDP) optimization problem, it can
be tackled by interior-point methods or SDP solvers. Still, it is
time-consuming, and alternating direction multiplier (ADMM)
is then applied as the efficient solver. Finally, to avoid the
spectrum searching, an effective dual polynomial method is
designed for DOA estimation with closed-form solution.

The main contributions are categorized as follows,
1) A novel one-bit quantized model based on atomic norm
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Fig. 1. An illustration of ULA and SLA, where the circles and crosses
represent sensors and holes, respectively. There are eight sensor elements in
the ULA while the SLA has the same antenna aperture as ULA with only
five sensors.

minimization is built for DOA estimation, where the off-grid
and sign inconsistency problems are addressed. 2) The result-
ing optimization problem is equivalently transformed to SDP
problem, however, it is not computational friendly. Therefore,
ADMM method is adopted as the efficient solver. 3) A dual
polynomial method with closed-form solution is proposed
to avoid the spectrum searching without requiring a prior
information of source number.

II. SIGNAL MODEL WITH ONE-BIT QUANTIZATION

Consider a massive uniform linear array (ULA) system with
N omnidirectional antennas, where the inter-spacing of sen-
sors is d. Assume that K narrowband far-field and uncorrelated
sources impinge on the ULA from directions {θ1, θ2, . . . , θK},
with θk ∈ [−π/2, π/2]. Note that the noise-free signal model
of the massive ULA system at one snapshot is expressed as,

p = As, (1)

where p = [p1, . . . , pN ]T ∈ CN and s = [s1, s2, . . . , sK ]T ∈
CK are the received signal vector without measurement
noise and signal vector, respectively. A = [a(θ1),
a(θ2), . . . ,a(θK)] ∈ CN×K is the manifold matrix com-
posed of the spatial steering vectors a(θk) = [1, ej2πfk , . . . ,
ej2π(N−1) fk ]T , k = 1, . . . , K , where fk = d

λ sin θk is the
spatial angular frequency corresponding to θk with λ be the
wavelength.

In general, some massive antenna array systems are con-
figured with the SLA. The relation between ULA and SLA
is illustrated in Fig. 1. To be specific, a real-valued selection
matrix Γ ∈ {0, 1}M×N with only single 1 in each row is
defined to model the SLA, where M is the number of sensors
in the SLA. In the presence of noise, the signal model with
SLA is modeled as [11],

x = Γ(p + n). (2)

where n = [n1, n2, . . . , nN ]T ∈ C
N is the Gaussian noise

distribution with zero mean and variance σ2
n.

To achieve low hardware complexity, one-bit quantization
is considered. Then, (2) is modified as,

y = sign(�{x}) + jsign(�{x}) (3)

with one-bit measurements y ∈ CN . �{·} and �{·} stand for
the real and imaginary parts, respectively. Herein sign(·) is an
element-wise function, defined as,

sign(v) =

{
1, if v ≥ 0,

−1, if v < 0.
(4)

As only sign information is available, the problem in (3)
becomes more challenging for DOA estimation.

III. THE PROPOSED METHOD

A. One-Bit Denoising Model With Atomic Norm

To deal with the off-grid problem, atomic norm is intro-
duced. That is,

‖p‖A = inf
ck≥0
{
∑

k

ck | p =
∑

k

cka(f)} (5)

where A denotes the atomic set, defined as,

A = {a(f), f =
d

λ
sin θ}. (6)

On the basis of that, p is sparsely represented by atoms in
A instead of discretized dictionary. In the absence of noise,
we have,

�{y} ◦ �{Γp} ≥ 0, (7)

�{y} ◦ �{Γp} ≥ 0, (8)

‖�{Γp}‖1 + ‖�{Γp}‖1 = 1, (9)

where ◦ denotes the hardmard product. These constrains
ensure the sign consistency and enable that p can be exactly
recovery on a unit sphere to avoid the trivial solutions. The
loss function is commonly used to guarantee the data fidelity as
well as to tolerate the existence of the sign inconsistence, with
its simplicity and robust performance [16], [17]. Therefore,
the problem in (3) can be solved by the following optimization,

min
p
− 1

2M

[�{Γp}
�{Γp}

]T[�{y}
�{y}

]
+γ ‖p‖A

s.t. ‖�{Γp}‖1 + ‖�{Γp}‖1 ≤ 1. (10)

where γ is the regularization parameter and the inequality
equation in constraint is to ensure the convexness of (10)
from (9). It is worth noting that the inequality equations (7)
and (8) have emerged into the loss function in the above
optimization problem. In addition, (10) can be seen as a
denoising model compared with which used in [15].

Based on [18], [20], (10) can be equivalently transformed
to a semidefinite programming (SDP) problem as,

min
p,u,t

− 1
2M

[�{Γp}
�{Γp}

]T[�{y}
�{y}

]
+γ(t + u1)

s.t.
[

T(u) pR + jpI

(pR + jpI)
H

t

]
≥ 0,

‖ΓpR‖1 + ‖ΓpI‖1 ≤ 1; (11)

where u1 is the first element of u. T(u) denotes a Toeplitz
matrix with u as the first column. For brevity, we use pR and
pI to represent the real and imaginary parts, respectively. The
SDP problem can be tackled by the off-the-shelf tools [18],
such as CVX and SeDuMi, which are not computational
friendly.

B. Alternating Direction Method of Multipliers (ADMM) for
One-Bit Denoising Model

In this section, to reduce the computational complex-
ity, ADMM is utilized to speed up the implementation.
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Before that, two auxiliary variables Z and α are introduced,
and then (11) is modified as,

min
pR,pI ,u,t

− 1
2M

(yT
RΓpR + yT

I ΓpI) + γ(t + u1)

s.t. Z =
[

T(u) pR + jpI

(pR + jpI)
H

t

]
Z ≥ 0
α = 1− yT

RΓpR − yT
I ΓpI

α ≥ 0, (12)

where yR = �{y} and yI = �{y}. Therefore, the augmented
Lagrangian of (12) is written as,

Lρ(pR,pI ,u, t,Z,Λ, α, τα)

= − 1
2M

(yT
RΓpR + yT

I ΓpI) + γ(t + u1)

+tr

{(
Z−

[
T(u) pR + jpI

(pR + jxI)
H

t

])
Λ
}

+
ρ

2

∥∥∥∥Z−
[

T(u) pR + jpI

(pR + jpI)
H

t

]∥∥∥∥
2

F

+τα(α− 1 + yR
T ΓpR + yI

T ΓpI)

+
ρ

2

∥∥α− 1 + yR
T ΓpR + yI

T ΓpI

∥∥2

2
. (13)

where ρ > 0 is a penalty parameter. The ADMM consists of
the following updating iterations,

(pl+1
R ,pl+1

I , tl+1,ul+1)
= arg min

p,t,u
Lρ(pR,pI , t,u,Zl,Λl, αl, τ l

α), (14)

(Zl+1, αl+1)
= argmin

Z,α
Lρ(pl+1

R ,pl+1
I , tl+1,ul+1,Z,Λl, α, τ l

α), (15)

The sysmbol (·)l denotes the estimates at l-th iteration. For
the sake of convenience, Z and Λ are respectively partitioned
as,

Z =
[

Z0 zR + jzI

(zR + jzI)
H zn+1,n+1

]
(16)

Λ =
[

Λ0 λR + jλI

(λR + jλI)
H Λn+1,n+1

]
(17)

with Z0 ∈ CN×N and Λ0 ∈ CN×N . The updates with
respect to the primal variables in (14) can be calculated via
the following closed-form expressions,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pl+1
R =(ρ+

ρ

2
bT

RbR)−1(
1

4M
bR+ρzl

R+λl
R+

(ραl + τ l
α)

2
bR)

pl+1
I =(ρ+

ρ

2
bT

I bI)−1(
1

4M
bI +ρzl

I +λl
I +

(ραl + τ l
α)

2
bI)

tl+1 = zl
n+1,n+1 + (Λl

n+1,n+1 − γ)/ρ

ul+1= W(T∗(Zl
0 + Λl

0/ρ)− γ

ρ
e1).

(18)

where bR = ΓT yR and bI = ΓT yI respectively. W is a
diagonal matrix which is expressed as,

W = diag{[ 1
N

,
1

2(N − 1)
,

1
2(N − 2)

, . . . ,
1
2
]T }. (19)

and T∗(·) is the Toeplitz adjoint operator.

The matrix Z is a positive semidefinite one, and it can be
calculated by

Zl+1 =

[[
T(ul+1) pl+1

R + jpl+1
I

(pl+1
R + jpl+1

I )
H

tl+1

]
−Λl

ρ

]
+

. (20)

In order to ensure the characteristic of positive semidefinite,
we utilize a projection function [.]+ to enforce the matrix
onto the positive definite cone by performing an eigenvalue
decomposition and setting all negative eigenvalues to zero.

At last, the dual variable α in (15) can be updated with the
closed-form as below,

αl+1=
[
1−
〈
y,Γpl+1

〉
R
− τ l

α

ρ

]
+

, (21)

where pl+1 = pl+1
R +jpl+1

I . Regarding the dual variables, they
can be updated with iterating rules,⎧⎪⎨
⎪⎩

Λl+1←Λl+ρ

(
Zl+1−

[
T(ul+1) pl+1

R + jpl+1
I

(pl+1
R + jpl+1

I )
H

tl+1

])

τ l+1
α ←τ l

α + ρ(αl+1 − 1 + yT
RΓpl+1

R + yT
I Γpl+1

I )
(22)

After determining the noiseless measurement p, the exist-
ing approaches utilize subspace-based methods, viz. MUSIC,
to estimate DOAs via spectrum searching, which is not
computationally efficient.

C. Effective Dual Polynomial Method for DOA Estimation

Next, different from the existing works using the noiseless
measurement p, we propose an effective dual polynomial
method based on the estimate of α for DOA estimation.
Towards this end, (10) is rewritten as,

min
pR,pI

− 1
2M

(yT
RΓpR + yT

I ΓpI) + γ‖p‖A
s.t. yT

RΓpR + yT
I ΓpI ≤ 1. (23)

The Lagrange function of (23) is expressed as,

L(pR,pI , α) = γ‖p‖A −
1

2M
(yT

RΓpR + yT
I ΓpI)

+α(yT
RΓpR + yT

I ΓpI − 1), (24)

with α ≥ 0. The dual function of (24) can be deduced via
minimizing L with respect to pR and pI ,

g(α) = inf
pR,pI

L(pR,pI , α)

= −α+ inf
pR,pI

(γ‖p‖A + (αyT
RΓ− 1

2M
yT

RΓ)pR

+(αyT
I Γ− 1

2M
yT

I Γ)pI)

= −α+ inf
pR,pI

(γ‖p‖A −
〈

(
1

2M
− α)ΓT y∗,p

〉
R

)

= −α+ I{ω,‖ω‖∗
A≤γ}(q), (25)

where q = ( 1
2M − α)ΓT y∗, and (·)∗ denotes the conjugate

operator. The term IA(.) is an indicator function which can
be presented as,

I{ω,‖ω‖∗
A≤γ}(q) =

{
0, ‖q‖∗A ≤ γ

−∞, otherwise,
(26)
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where ‖·‖∗A is the dual atomic norm, defined as,

‖q‖∗A = sup
‖p‖A≤1

〈q,p〉R = sup
a∈A
〈q,a〉R, (27)

with 〈·〉R as the real inner product. Thus the dual objective
g(α) reaches its maximum −α if∥∥∥∥( 1

2M
− α)ΓT y∗

∥∥∥∥
∗

A
≤ γ. (28)

Let p̂ be the optimal solution of (11), which can be
decomposed as,

p̂ =
K∑

k=1

ckâ(fk), (29)

where â(fk) ∈ S with S ⊂ A being regarded as the support
of p̂. It is obvious that ‖p̂‖A =

∑ |ck|. Since q̂ = ( 1
2M −

α̂)ΓT y∗, based on (28), we have,

〈q̂, p̂〉R ≤ ‖q̂‖∗A ‖p̂‖A ≤ γ ‖p̂‖A , (30)

due to Hölder’s inequality. On the other hand, from (25)
and (26), we get,

γ ‖p̂‖A − 〈q̂, p̂〉R ≤ 0. (31)

Combine (30) and (31), we obtain 〈q̂, p̂〉R = γ ‖p̂‖A, which
indicates that q̂ and p̂ are primal-dual feasible. Therefore,
we can conclude that 〈q̂,a(fk)〉R = γ, for a(fk) ∈ S,
otherwise, 〈q̂,a(fk)〉R < γ.

Note that the support set S is composed of the angular
frequencies corresponding to DOAs. To the end, the angular
frequency information can be extracted by the dual polynomial
method as,

|〈q̂,a(fk)〉R| =
∣∣∣∣∣
N−1∑
n=0

qnej2πnfk

∣∣∣∣∣ = γ. (32)

Therefore, DOAs can be computed via inverse trigonometric
function,

θ̂k = arcsin(2f̂k). (33)

D. The Selection of Regularization Parameter

The choice of the regularization parameter plays an impor-
tant role in the proposed method for DOA estimation.
As analyzed in [17], [20], the regularization parameter γ

is proportional to
√

ln N
M , which can be expressed as γ =

C
√

ln N
M with a scale factor C. Hence, an optimal C is the

crucial factor for the accuracy of the proposed method. The
experiment is conducted from varied scales of C to explore
its relation with the reconstruction ratio r̃ = 10 log( ‖p‖2

2
‖p−p̂‖2

2
)

among 100 Monte Carlo trails, as shown in Fig. 2. From Fig. 2,
we can see that the reconstruction ratio approaches its opti-
mum when C = 0.048. In other words, the proposed method
achieves the best estimation performance. This is a calibration
process to settle the optimum regularization parameter, in the

further simulations, γ is fixed as 0.048
√

ln N
M .

Fig. 2. The effect of the reconstruction ratio with C.

Fig. 3. The super resolution of the proposed method with closely-spaced
sources.

Fig. 4. RMSE versus SNR.

IV. SIMULATION RESULTS

In this section, M elements of SLA are randomly sampled
from the massive ULA with N sensors, where M = 60
and N = 128. All simulations in this letter are operated via
Matlab 2014a on a PC platform with Windows 10 operation
system. The signal-to-noise ratio (SNR) is defined as SNR =
10 log σ2

s

σ2
n

. The root mean square error (RMSE) is commonly
used to examine the performance of DOA estimation algo-
rithms, which can be expressed as,

RMSE =

√√√√ 1
KP

P∑
p=1

K∑
k=1

(θ̂k,p − θ̂k)
2
, (34)

where P denotes the number of the Monte Carlo runs and θ̂k,p

is the DOA estimation of θ̂k at pth Monte Carlo run.
In the first experiment, three uncorrelated sources with

directions from {−13.8597, 29.3692, 30.7596} are considered
to evaluate the effectiveness of the proposed method, where
the last two sources are closely-spaced and SNR = 10dB.
To investigate the proposed method being robust against the
sign inconsistency, the signs of 6 elements in the measure-
ments are chosen to flip. As seen in Fig. 3, it is observed that
the proposed method can estimate DOAs accurately, where
15 Monte Carlo runs are considered. Fig. 4 illustrates the
RMSE comparison versus SNR of the CBIHT [10], SVM [11],
FPC [12], Gr-SBL [13], EM-GAMP [14], BANM [15], and the
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Fig. 5. The histogram of CPU running time.

proposed method with SNR varied from −10dB to 20dB.
Three uncorrelated targets are randomly chosen from −90◦

to 90◦, but each of them are separated at least 1◦. Still,
the signs of 6 elements from 60 measurements are flipped. The
simulation result is averaged among 200 Monte Carlo runs.
In addition, the grid steps of the discretized dictionary used in
Gr-SBL, CBIHT and FPC algorithms are 0.1◦. We observe that
the proposed method is superior to other compared approaches.

In the next simulation, we will analysis the computational
complexity of each methods. From [10], the computational
complexity of CBIHT is around O(MN). The computa-
tional complexity of SVM and FPC is about O(N3) and
O(ninnernouterMN2

d ) respectively, where Nd, ninner and
nouter represent the numbers of overcomplete dictionary, inner
and outer iterations. It is well known that CVX solvers always
exploit the interior-point methods to solve amount of linear
equations along with the Newton directions, hence the overall
computational complexity is approximately O(N3.5) [22].
On the other hand, the most computational demanded oper-
ation in ADMM is eigen-decomposition in (20), thus the
computational complexity is O((N + 1)3) which is smaller
than that of CVX by an order of 1.5. Finally, the CPU
running time of all test methods is compared in Fig. 5, where
the results are averaged among 100 Monte Carlo runs. The
proposed method outperforms the FPC and BANM in terms
of computational complexity. In addition, we compare the
running time of CVX solving the problem in (11), to show the
computational efficiency of the proposed method with ADMM
as the solver.

V. CONCLUSION

Consider the problems of off-grid mismatch and sign incon-
sistency of one-bit measurements, a robust and gridless one-bit
DOA estimation algorithm via atomic norm denoising is pro-
posed. By combining the atomic norm minimization and the
linear loss function, we derived a convex signal reconstruction
optimization problem, solved by the efficient ADMM. Then,
the polynomial method is proposed for DOA estimation with
closed-form solution. Numerous simulation results verify the
superiority and effectiveness of the proposed scheme.
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