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Fast Rank-Revealing QR Factorization for
Two-Dimensional Frequency Estimation

Hui Cao , Member, IEEE, and Qi Liu , Member, IEEE

Abstract— It is well known that the singular value
decomposition (SVD), as the best rank-revealing factorization,
furnishes the best rank-k approximation to a dense matrix
with expensive computational cost of O(M 2N + N 2M +
min(M, N )3). Moreover, it is hard to implement in parallel,
which challenges the memory storage in wireless communica-
tions data-driven system. In this letter, a fast rank-revealing
technique, namely, bilateral random projections (BRP) with
O(MN ) operations, is exploited for two-dimensional (2-D)
frequency estimation of a complex sinusoid in noisy environment.
Based on the resulting data matrix, whereafter, two-stage QR
factorization frequency estimation method with the weighted least
squares (WLS) as solver, is proposed to reduce the computational
complexity of those SVD-based frequency estimators. Simulation
results demonstrate the efficiency of the proposed algorithm in
comparison with several frequency estimation approaches and
the Cramér-Rao lower bound (CRLB) as benchmark.

Index Terms— Two-dimensional frequency estimation, bilateral
random projections, rank-revealing QR factorization, weighted
least squares.

I. INTRODUCTION

FREQUENCY estimation is a key technique for the
receiver design in wireless communications, such as

carrier frequency offset, and is of broad interest, with wide
applications arising in radar signal processing, speech analysis,
smart grid stability, health assessment of living trees, to name
just a few [1]–[3]. Recently, the Doppler and frequency shifts
are struggled to avoid the deterioration in the quantum satellite
communication performance of orthogonal frequency-division
multiplexing (OFDM)-based systems, the interested reader is
referred to [4], [5]. Therefore, frequency estimation is fertile
research ground that merits further investigation on the fast
and accurate approaches for reliable wireless communications
data-driven system.

A. Prior Works

The iterative quadratic maximum likelihood (IQML)
method [6] achieves an optimum estimation at the expense
of heavy computational complexity due to a multidimen-
sional search to find the global maximum of the maximum
likelihood (ML) cost function, which is not suitable for
real-time applications. To reduce the IQML’s implementation
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cost, [7] is proposed based on a relaxation algorithm for the
ML formulation to produce a near-optimum solution. Con-
ventional subspace-based algorithms, for instance, multiple
signal classification (MUSIC) [8] and estimation of signal
parameters via rotational invariance techniques (ESPRIT) [9],
are also utilized for frequency estimation, which can achieve a
very high estimation accuracy with low complexity. Motivated
by the fact that the left and right principal singular vectors
contain the frequencies in the first and second dimensions,
respectively, the principal-singular-vector utilization for modal
analysis (PUMA) [10], is proposed with singular value decom-
position (SVD) and weighted least squares (WLS) techniques.
On the other hand, numerous efforts [11], [12] have been made
to compute the frequency of a sinusoidal by interpolating on
the discrete Fourier transform (DFT) coefficients. However,
most of them are iterative methods or rely on the peak DFT
coefficients or its neighbors to estimate the frequency. These
approaches suffer from high computational load or lower SNR
threshold problems. Recently, 2-D root-MUSIC is proposed
for joint angle and Doppler estimation in colocated multiple-
input multiple-output (MIMO) radar system [13].

B. Contributions

We propose a two-stage QR factorization 2-D frequency
estimation method based on the fast rank-revealing bilateral
random projections (BRP) technique. Motivated by that one-
dimensional (1-D) frequency information is embedded in the
upper triangular matrix R ∈ C

M×N of QR factorization on the
resulting 2-D data matrix Y ∈ CM×N , a novel signal subspace
is obtained from the first row entries of R, which is the null
space of We apply the WLS approach to estimate the frequency
from the obtained subspace. The other dimension’s frequency
is estimated following a similar procedure. The contributions
of our work are briefly summarized as follows:

1) To speed up the implementation, BRP with O(MN)
operations is utilized to approximate the dense data matrix.
Moreover, because of the computationally demanding SVD
with O(M2N + N2M + min(M, N)3) operations, two-
stage QR factorization for 2-D frequency estimation is
applied to further reduce the computational complexity, where
QR factorization only costs O(M2N − N3/3) complexity.

2) The rank-revealing property of BRP is first approved.
It is verified by simulation result that the proposed method
with BRP performs better than that without BRP.

3) The proposed method achieves comparable performance
to the Cramér-Rao lower bound (CRLB) and outperforms
several 2-D frequency estimation approaches, where the mean
square error (MSE) of the estimate is also derived.
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II. ALGORITHM DEVELOPMENT

In this work, we consider the problem of 2-D frequency
estimation of a complex sinusoid with additive Gaussian noise,
modeled as following discrete formulation [14]:

xm,n = sm,n + wm,n,

m = 1, 2, · · · , M, n = 1, 2, · · · , N, M ≥ N, (1)

where the ground-truth signal is sm,n = γej(μm+νn) with
γ ∈ C as the complex amplitude of signal. Without loss
of generality, we assume that an additive noise wm,n is
distributed as Gaussian process with mean zero and unknown
variance σ2. The unknown parameters {μ, ν} ∈ (−π, π)
are the 2-D frequencies to be estimated from the observed
measurements {xm,n} with MN samples. For ease of pre-
sentation, (1) is rewritten in matrix form as:

X = S + W. (2)

The elements of S are denoted as [S]m,n = sm,n =
γej(μm+νn), where [·]m,n denotes the element of a matrix.
To clearly show the relationships of the elements in the rows
and columns of S, Lemma 1 is introduced as follows1:

Lemma 1: Unfolding the noise-free signal matrix S, it has
the form of

S =

⎡
⎢⎣

γejμejν γejμej2ν · · · γejμejNν

γej2μejν γej2μej2ν · · · γej2μejNν

...
...

. . .
...

γejMμejν γejMμej2ν · · · γejMμejNν

⎤
⎥⎦ .

Since each columns or rows of S are characterized by {ejμ}
and {ejν}, respectively, it is easy to observe that the entries
along its corresponding columns or rows satisfy the linear
prediction (LP) property [14].

For a dense M × N matrix X in (2), SVD, as the best
rank-k approximation to X, can be used to determine the rank
of matrix but at the cost of highly computational complexity.
In this work, a fast low-rank approximation method, BRP [15]
is exploited for the approximation to X. Given k BRP of X,
i.e., L1 := XΓ1 and L2 := XT Γ2, X is approximated by

Y = L1(ΓT
2 L1)−1LT

2 , (3)

where Y ∈ CM×N is the data matrix obtained from X
after BRP, Γ1 ∈ CN×k and Γ2 ∈ CM×k . For the dense
matrix X, O(MNk) operations are required to obtain BRP
and O(k2(2N +k)+MNk) operations are sufficed to get Y,
where the computational complexity of BRP is much less than
that of SVD-based approximation methods. Next, we show the
rank revealing property of BRP.

Lemma 2: We observe that Y is a reduced form of X from
(3). Therefore, the interlacing inequalities of singular values
between Y and X, lead to

σi(Y) ≤ σi(X). (4)

Denote that M := (ΓT
2 L1)−1. We factorize Y with parti-

tioned M, that is:

Y = L1

[
M11 0
M21 M22

]
LT

2 . (5)

1In the absence of noise, Y ≈ X = S. Both Y and X satisfy the LP
property. Motivated by that, 1-D information w.r.t. μ or ν can be decoupled.

Fig. 1. AMSE of μ and ν in comparison with/without BRP.

Since M is obtained by the BRP of Y, we have:

σi(M11) ≤ σi(Y). (6)

From (4) and (6), we obtain σi(M11) ≤ σi(X). Moreover,
the �2-norm of M11 is small. Hence, these facts suggest that
BRP is a rank-revealer, which helps to improve the proposed
method wherein it is also verified by the simulation result
in Fig. 1. As seen from the figure, the proposed algorithm
with BRP enjoys better threshold than that without BRP.
Now, to achieve the automatic pairing of frequencies, QR
factorization is first applied to the novel data matrix Y, which
is expressed as the product of an unitary matrix Q ∈ CM×M

and an rank-revealing upper triangular matrix R ∈ CM×N :

Y = QR = Q
[

r11 r12

0 R22

]
, (7)

where R contains the information of frequency ν, r11 is the
first element of R, r12 is the first row of R except the first
element, and R22 ∈ C(M−1)×(N−1) is the rest of R except
r11 and r12. As the Frobenius norm of r12 is small, we use
the first row of R to obtain the basis of the noise space. The
first row of R, namely, r := [r11 r12], is the null space of Y.
Then,

rg =
[
r11 r12

] [
g1

g2

]
= 0. (8)

where g := [gT
1 gT

2 ]T is the orthogonal space of Y and g1 =
−r−1

11 r12g2 as r11 �= 0. Therefore,

g =
[−r−1

11 r12

IN−1

]
g2 := Pg2. (9)

To ensure the columns of P being orthonormal, the orthogonal
projection onto P is applied. We get P⊥ := P(PHP)−1PH .
Hence, the novel signal subspace is computed from Vs =
IM −P⊥. By assumed that vs := [v1 v2 · · · vN ] is the first
row of Vs, then

vs1c − vs2 = 0(N−1)×1, (10)

in which vs1 := [v1 v2 · · · vN−1], vs2 := [v2 v3 · · · vN ],
and c is the LP factor. In matrix form, (10) is rewritten as:

Aṽs = 0(N−1)×1, (11)
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where A = Toeplitz
([−c 01×(N−2)

]T
,
[−c 1 01×(N−2)

])
.

In presence of noise, Aṽs = e, where e is the error vector.
Following [14], the estimate of c is computed by

min
c

eHΦe = min
c

(vs1c − vs2)HΦ(vs1c − vs2), (12)

where the symmetric weight matrix Φ is derived from the
covariance of e [10]. Taking advantage of QR property,
AST = 0(N−1)×M , we express e as:

e = Aṽs = AYTq∗ ≈ A(S + W)T q∗ = AWT q∗, (13)

where ∗ denotes the conjugate operator and q is the first
column of matrix Q. Here we use YT in (13) because the
frequency information of second dimension is contained in R
of the QR factorization. Hence we have:

eeH = AWTq∗qT (WT )HAH . (14)

As Q is an orthonormal matrix, q∗qT = IM , and

E

{
WT (WT )H

}
= σ2IN , then E{eeH} = σ2AAH . Then

Φ = σ2
[
E{eeH}]−1 = (AAH)−1. On the other hand,

we assume J (c) = (vs1c − vs2)HΦ(vs1c − vs2), then ĉ is
computed by differentiating J (c) with respect to (w.r.t.) c and
setting the resultant expression to zero:

J �(c) = 2cvH
s1Φvs1 − 2vH

s1Φvs2 = 0. (15)

We obtain:

ĉ =
vH

s1Φvs2

vH
s1Φvs1

. (16)

We calculate ĉ using (12) and update Φ with c = ĉ in
an iterative manner, then the final estimate of frequency in
the second dimension is:

ν̂ = ∠(ĉ), (17)

On the other hand, μ is estimate in a similar manner based
on the QR factorization of YT . We summarized the whole
procedure as follows:

i) Apply BRP on the dense data matrix X, then perform the
QR factorization on Y to obtain R.

ii) Use the first row of R to construct P⊥.
iii) Obtain the signal subspace Vs from P⊥, then conduct

the WLS procedure from (7)-(17) to obtain the estimate of ν.
iv) Perform QR factorization on XT and repeat ii)-iii) to

get the estimate of μ.

III. PERFORMANCE ANALYSIS

To further verify the accuracy of the proposed method,
the MSE of the estimate are derived.

From (16), we construct:

F(ĉ) = vH
s1Φvs1ĉ − vH

s1Φvs2. (18)

Using the Taylor series expansion,

F(ĉ) ≈ F(c) + F �(c)(ĉ − c)
= vH

s1Φvs1c − vH
s1Φvs2 + vH

s1Φvs1(ĉ − c). (19)

Fig. 2. AMSE of μ and ν versus SNR.

where F �(c) is the first derivative of F(ĉ) evaluated at ĉ = c.
Let (19) be zero and we have:

ĉ ≈ c − F(c)
F �(c)

= c − vH
s1Φvs1c − vH

s1Φvs2

vH
s1Φvs1

, (20)

and we obtain E{ĉ} ≈ c.2 The MSE of ĉ is:

MSE(ĉ) = E{(ĉ − c)(ĉ − c)∗} =
σ2

n

vH
s1Φvs1

. (21)

Based on [16], the MSE of ν̂ with SNR = |γ|2/σ2, is:

MSE(ν̂) ≈ MSE(ĉ)
2|c|2 =

σ2
n

2vH
s1Φvs1

≈ 6σ2

MN(N2 − 1)|γ|2 ≈ 6
MN(N2 − 1)SNR

. (22)

Similarly, the MSE of μ̂ is:

MSE(μ̂) ≈ 6
MN(M2 − 1)SNR

. (23)

IV. NUMERICAL EXAMPLES

In this section, computer simulations are conducted to
evaluate the performance of the proposed method in white
Gaussian noise, compared with root-MUSIC [13], PUMA [10],
ESPRIT [9], and IQML [6] algorithms as well as CRLB [6].
The MSEs of μ and ν are defined as E{(μ̂ − μ)2} and
E{(ν̂ − ν)2}, respectively. We compare the averaged MSE
(AMSE), which is the average of μ and ν’s MSEs in the sim-
ulations. We scale the noise matrix to produce different SNR
conditions where SNR = |γ|2/σ2 with γ = 1. Unless stated
otherwise, M = N = 20. Our simulations are performed on
the MATLAB R2017b of 64-bit Windows 10 operating system
with 1.70 GHz intel Xeon CPU E5-2609 and 32 GB RAM.

In the first test, the sinusoidal parameters are assigned as
μ = 0.15π and ν = 0.35π. As shown in Fig. 2, the proposed
algorithm achieves optimal performance when SNR is larger
than −5 dB. All compared methods can approach the CRLB at
smaller SNR except the root-MUSIC and ESPRIT, while the
ESPRIT and IQML have better threshold performance than
others.

2With sufficiently large SNR and data size, ĉ will have a value close to
c. It means that the proposed method is unbiased estimator, which is also
demonstrated by our simulation results.
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Fig. 3. AMSE of μ and ν versus M.

Fig. 4. AMSE of μ and ν versus μ.

Fig. 5. Computation time versus M.

In the second test, we study the AMSE of the proposed
method when the signal size M(N) ranges from 10 to 30,
as shown in Fig. 3. We observe that the proposed method
enjoys comparable performance with the compared algorithms
except the ESPRIT.

In the third test, we investigate the AMSE of μ and ν when
they varies from −π to π, where SNR = 5 dB. The results
are plotted in Fig. 4. The proposed method is comparable
to the PUMA and IQML but is superior to the root-MUSIC
and ESPRIT.

The last test compares the computational complexity,
wherein the computer runtime is shown in Fig. 5 and the
complexity analysis is tabulated in Table I. We can see that the
proposed algorithm enjoys the lowest computation complexity
among all methods in comparison. That is to say, the proposed
algorithm is a computationally simple solution with minimum
achievable MSE at sufficiently high SNR conditions, although
its threshold behavior is inferior to its counterparts.

TABLE I

COMPUTATIONAL COMPLEXITY FOR DIFFERENT ALGORITHMS

V. CONCLUSION

A computationally efficient frequency estimator for 2-D
complex sinusoid is proposed, where two-stage processes are
designed based on QR factorization to construct the novel
signal subspace w.r.t. 1-D frequency. Benefit from the rank-
revealing property of BRP, it contributes to reduce the compu-
tational complexity and improve the accuracy of the estimator.
It is worth noting that the proposed method can be easily
extended to the application of multi-tone frequency estimation
of 2-D complex sinusoid.
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