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A Neural-Inspired Architecture for EEG-Based
Auditory Attention Detection
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Abstract—Humans have the ability to focus on one of the sound
sources in a noisy scene, which is critical for everyday communica-
tion. Auditory attention detection (AAD) seeks to detect selective
attention from one’s brain signals. For AAD to be useful in brain–
computer interface applications, new approaches with low compu-
tational cost, high classification performance, and low latency are
required to be developed. In this study, we proposed a novel neural-
inspired architecture to mimic the neural computation and coding
strategy in the brain for electroencephalography-based AAD. We
validated our model through data visualization, and conducted
experiments on two publicly available databases. For both KUL
and DTU databases, it outperforms both linear and convolutional
neural network (CNN) models with consistent improvements from
1 s to 5 s decision windows in terms of detection accuracy. Although
the accuracy of the proposed neural-inspired model is inferior to
the state-of-the-art spatio-spectral feature (SSF)-CNN model, the
computational cost of our model is less than 1% of SSF-CNN’s.
Moreover, the neural-inspired decoder is more hardware friendly
and energy-efficient due to its biological computing scheme. Over-
all, the proposed neural-inspired architecture realizes a fast, accu-
rate, and low energy expenditure AAD, which is a big step forward
towards practical neuro-steered hearing aids.

Index Terms—Auditory attention, brain–computer interface
(BCI), electroencephalography, neural-inspired architecture.
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I. INTRODUCTION

THE ability to selectively attend to speech in so-called
“cocktail party” scenarios is critical for everyday com-

munication [1]. However, millions of people around the world
with hearing loss struggle to listening under such conditions [2].
Modern hearing devices have been developed to produce better
performance by using noise suppression systems. Nevertheless,
the selection of the attended speaker is still a fundamental
problem in cocktail party environments. Recent research in
neuroscience has demonstrated that the selective auditory at-
tention can be decoded using recordings of brain activity, such
as electrocorticography (ECoG) [3], magnetoencephalography
(MEG) [4], [5] and electroencephalography (EEG) [6]–[10].
These findings open up new opportunities to develop a new gen-
eration hearing aid that extracts the attention-related information
directly from the brain, and then enhances the target speaker, i.e.,
neuro-steered hearing aids.

Inspired by this new insight, many auditory attention detection
(AAD) algorithms have been developed. Specifically, AAD
tackles the challenge of detecting which speaker is attended
by the subject in a multispeaker scenario. The most common
approach to AAD, which is known as stimulus reconstruc-
tion, focuses on decoding which speech envelope corresponds
to the attended speaker [6]. Neural activities are used to ap-
proximate the envelope of the speech heard by the subject,
that is then compared with the original speech envelopes. The
speaker with a higher correlation coefficient is determined
as the attended speaker. Different variations of the stimulus
reconstruction algorithm have been proposed to improve the
AAD performance [8], [11]–[14]. However, the stimulus recon-
struction based AAD decoders still suffer from the following
limitations.

1) The temporal resolution of stimulus reconstruction ap-
proach for reliable AAD is on the order of ∼10 s, which
is not practical for real-time BCI applications [15]–[17].
There is a tradeoff between real-time operation and perfor-
mance of the attentional state estimates [18]. The major
reason is the stochastic fluctuations and uncertainties in
correlations between the reconstructed and the original
speech envelopes when computing over smaller windows
of length [19]. Humans can switch attention from one
speaker to another one at a temporal resolution of ∼1
s [11]. It remains a challenge for stimulus reconstruction
based AAD models to accurately detect auditory attention
at such a high temporal resolution.
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2) Most stimulus reconstruction approaches assume the
availability of clean speech streams to perform AAD,
which limits their applicabilities in the real world [20].
Although some studies have integrated the speech separa-
tion/extraction algorithms [21]–[23] to obtain the demix-
ing speech envelopes into AAD systems, it significantly
increases the computational complexity and adds lots of
overheads [20]. Moreover, the demixing process often has
negative effects on decoding accuracy or even makes the
AAD system fail in real-life situations.

Motivated by the findings that locus of the auditory attention is
neurally encoded [24]–[29], we hypothesize that we can decode
the spatial location of the attended speaker from brain activities.
This paradigm can realize AAD without access to the speech
stimulus envelopes, which makes it be a highly competitive
candidate for neuro-steered hearing aids [20]. Hence, it has the
potential to achieve advanced performance at low-latency set-
tings. Vandecappelle et al. [30] have firstly decoded the location
of auditory attention based on EEG signals using a convolutional
neural network (CNN), which achieves a relatively high AAD
accuracy of 80.8% for 1 s decision window. Unfortunately,
this approach does not benefit from feature representation as
they directly take the C × T -dimensional matrix, where C and
T , respectively, denote the total number of EEG channels and
time duration, as the input. Considering that the topographic
specificity of alpha power (8 – 13 Hz) indicates the direction of
auditory attention to speech [24], [25], [27], [28], we developed
a novel spatio-spectral feature (SSF) representation method
that retains task-related information in a pilot study [31] and
outperforms the up-to-date models in AAD tasks [20], [30], [32].

Moreover, feature extraction is of particular importance for
BCIs due to the low signal-to-noise ratio of EEG signals. In this
study, we employed the neural model of Izhikevich [33] to learn
and extract discriminative features for EEG-based AAD tasks, in
which the EEG signals are processed biologically realistically.
This prompts us to look for spiking neural networks (SNNs)
with more biologically plausible spiking neurons. SNNs, as the
third generation of artificial neural networks (ANNs) that more
closely mimic biological neural functionality by processing in-
formation with sparse and asynchronous binary spikes (namely,
events) over multiple time-steps [34]. ANNs succeed in tackling
complex cognitive tasks, in which the neurons receive, process,
and transmit analog information [35]. They, however, ignore the
fact that mammalian brains process binary spike-based infor-
mation using biological neurons. Contrary to traditional ANNs,
SNNs carry information only when an action potential, that is,
an intrinsic neuron along with its membrane electrical charge
reaches a predefined threshold. Hence, the neuron fires spikes
to carry information for subsequent neurons, which, in turn,
decrease or increase their potentials in response to these input
spikes.

Additionally, SNNs have shown favorable properties on neu-
romorphic hardware implementation, including low power con-
sumption, massive parallelism, and on-chip learning, etc [34].
This makes them coincide with on-going interest toward real-
world smart applications conditioned by limited hardware re-
sources, such as mobile and wearable devices. Considering

that EEG is essentially dynamic, and nonlinear time series
signals, SNNs are designed by temporal coding approaches
in isolating temporal characteristics of brain activities dur-
ing different states, and also offer the prospect of event-
driven hardware operation including the inherently biologically
plausibility [36].

To this end, we developed a neural-inspired approach for
EEG-based AAD task in this study, which is referred to as
NI-AAD hereafter. The proposed NI-AAD method can detect
the auditory spatial attention based on EEG alone, without the
need of clean speech envelopes. To the best of our knowledge,
this research is the first application of spiking neuron model to
the EEG classification problem for AAD. The remainder of this
article is organized as follows. In Section II, we formulate the
proposed AAD pipeline, followed by the data processing and
experimental setup in Section III. In Section IV, we report the
experimental results and discuss the findings. Finally, Section V
concludes this article.

II. NEURAL-INSPIRED AAD

Considering to formulate the EEG-based AAD as a binary
classification problem in a two-speaker scenario [14], [30],
[37], the proposed NI-AAD model consists of a spatio-spectral
EEG feature representation, a spiking encoder for EEG feature
extraction, and an SNN decoder for classification, as shown in
Fig. 1. The advanced feature representation and spiking encoder
are expected to extract spatial and spectral discriminative charac-
teristics of raw EEG signals, and improve the AAD performance.
Finally, an SNN decoder serves as a binary back-end classifier
for decision making.

A. Spatio-Spectral Feature Representation

Previous studies have demonstrated that the topographic dis-
tribution of alpha power changed with the spatial focus of audi-
tory attention [27], [28]. To improve the decoding performance,
it makes sense to preserve the spatial and spectral information of
EEG signals in feature representation from an AAD pipeline. As
shown in Fig. 1, we employed the SSF representation method to
extract the topographic specificity of alpha power from original
EEG data [31].

First, a fast Fourier transform (FFT) is employed to calculate
the power spectrum of EEG data. The average squared absolute
value in the α-band (8–13 Hz) is used as the individual mea-
surement value of each EEG channel. Second, we convert these
measurements of different decision windows into a sequence of
2-D images to take full advantage of the spatial features of EEG
signals. Specifically, the locations of EEG channels are projected
from the 3-D space to a 2-D plane using Azimuth equidistant
projection [38]. Moreover, the Clough–Tocher interpolant [39] is
exploited to estimate the values in-between the electrodes over
a 32×32 mesh. Thus, a topographical activity image of EEG
can be generated to depict the α-band within a time window.
And the sequence of EEG images derived from consecutive
time windows is capable of reflecting the temporal information,
which is taken as the input to the subsequent spiking encoder.
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Fig. 1. Proposed neural-inspired architecture for AAD, that is referred to as the NI-AAD model. It includes three modules, a spatio-spectral EEG feature
representation module, an EEG feature extraction module, and an SNN classifier. BN = batch normalization, DO = dropout.

Fig. 2. Model of LIF spiking neuron. Time course of the membrane potential of
an LIF neuron is driven by several spike trains oi. The LIF neuron is composed
of Dendrite and Soma. The dendrite plays the role of collecting signals from
other neurons and transmitting them to the “central processing unit,” called
soma, which performs the function of non-linear processing. When the sum of
total input exceeds a certain threshold ϑ, an output spike is generated and then
delivered to other neurons by the axon. After firing a spike, the neuron stays in
the refractory period.

B. EEG Feature Extraction

SNNs are designed to process inputs that are represented
as spike trains, which ideally are generated by event-based
sensors [40]. Therefore, EEG images generated by the SSF
representation method need to be encoded before they are fed
into an SNN model. In this section, we first introduce the spiking
neuron model that is adopted in our study. We then present
the spiking encoder to transform the real-valued samples into
discriminative features in the spiking domain.

1) Spiking Neuron Model: Different spiking neuron models
have been developed to mimic the natural computing in the
brain [41]. The Leaky Integrate-and-Fire (LIF) model is widely
used in computational neuroscience for its relatively good bio-
logical realism and low computational cost [33]. In this work, a
collection of LIF neurons formed the spiking encoder.

The LIF neuron model is introduced by the concept of mem-
brane potential Vj , as shown in Fig. 2. The membrane potentials
of the presynaptic neurons contribute to the postsynaptic neurons

by the positive correlation with the firing time of presynaptic
spikes. More concretely, at time-step t, the membrane potential
of neuron j in layer l is formulated by

V l
j [t] = λV l

j [t− 1] + I lj [t]− ϑolj [t− 1] (1)

with

I lj [t] =
∑
i

wjio
l−1
i [t] + blj (2)

where λ is a leak factor and ϑ denotes the firing threshold. I lj [t]
indicates current contributions from presynaptic neurons to the
neuron j. wji is the connection weight between presynaptic
neuron i and postsynaptic neuron j. blj denotes the constant
injecting current to the neuron j. The spikes generated by
neurons are defined as follows:

olj [t] =

{
1, ifV l

j [t] > ϑ

0, otherwise.
(3)

The event, viz., spike, is triggered if the membrane potential
exceeds the firing threshold ϑ at t, in general, ϑ = 1. The
membrane potential Vj [t] is reset to the rest potential Vrest after
firing, and stays at the refractory period for a period of time.

2) Spiking Encoder: Generally, effective feature extraction is
a crucial step for pattern classification. It is the data transforma-
tion from a high-dimensional space into a low-dimensional one,
and therefore, the low-dimensional representation retains some
meaningful, underlying properties from the raw data, ideally
close to its intrinsic dimension. Motivated by a generalizable
solution to dimensionality reduction, we proposed a spiking
encoder with a spiking convolutional layer, as shown in Fig. 1.
Compared to the conventional CNNs, the proposed spiking
convolution extracts EEG features with spiking events. In this
study, we take the real-valued inputs as the time-dependent input
currents and directly apply them in (1) at the first time-step.

The spike count from neuron i at layer l can be computed as
follows:

cli =

Nt∑
t=1

oli[t]. (4)
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where Nt is the length of spike trains oli[t] and referred to as the
encoding time window hereafter. In practice, the discrete spike
counts accumulated over an encoding time window Nt will be
used for decoding.

C. Spiking Neural Network Classifier

CNNs make use of “convolution” and “pooling” techniques to
reduce a large amount of input data into their essential features
for effective classification. Nevertheless, with the increase of
wider and deeper neural networks, the power consumption of
such networks becomes demanding. Moreover, it is a long-
standing problem in computational neuroscience to understand
how the plasticity dynamics are organized in multilayer (deep)
biological neural networks to achieve efficient data-driven learn-
ing [42]. In general, the success of previous CNN models for
EEG-based AAD tasks [30], [31] gives rise to questioning
whether the factors to their success are compatible with their
biological ingredients, viz., SNNs.

As shown in Fig. 1, an SNN decoder is applied to decode the
auditory spatial attention. It contains three hidden layers, two of
which consist of LIF spiking neurons. The first and second neural
layers are composed of 512 and 32 spiking neurons, respectively.
Finally, an SNN back end is applied to decode the output spike
counts of the second layer into pattern classes (i.e., the spatial
focus of auditory attention).

III. EXPERIMENTS

A. Data Specifications

In this study, experiments were carried out on two pub-
licly available AAD databases, namely, KUL [43] and DTU
databases [44].

1) KUL database: 64-channel EEG is recorded from 16
normal-hearing subjects while they are instructed to pay
selective attention to one of two competing speakers. EEG
is recorded at a sample rate of 8192 Hz using a BioSemi
ActiveTwo system. Four Dutch short stories, narrated by
different male speakers, are used as stimuli. The auditory
stimuli are presented from 90◦ to the left and 90◦ to the
right of the subject. Throughout the experiments, 48 min
of EEG for each subject is collected and 12.8 h of EEG
is recorded in total. More details of the experiment can be
found in [43].

2) DTU database: This database consists of 18 normal-
hearing subjects who selectively attend to one of two
simultaneous speakers. 64-channel EEG is recorded using
a BioSemi ActiveTwo system at a sampling rate of 512 Hz.
Speech stimuli are excerpts taken from Danish audiobooks
that are narrated by male and female speakers. The speech
mixtures are presented binaurally from 60◦ to the left and
60◦ to the right of the subject. The positions of the target
speech and the gender of speakers are randomized across
trials. Each subject listens to 60 trials in which they are
presented by 50 s of the speech mixtures. Therefore, the
DTU database includes 50 min of EEG for each subject

and 15 h of EEG for all 18 subjects. Further details can be
found in [44].

B. Data Preprocessing

EEG signals are firstly processed to filter out 50 Hz line noise
and harmonics [45]. Then, each channel data is rereferenced to
the average response of the mastoid electrodes. As the proposed
NI-AAD is expected to function in an end-to-end manner, no
artifacts removal operation is involved in the data processing. All
EEG data are first down-sampled to 128 Hz, and subsequently
bandpass-filtered between 1 and 50 Hz. Then, all EEG channels
are normalized for each trial.

For each subject, the EEG data is randomly split into a training
set (60%), a validation set (20%), and a test set (20%). For each
set, the EEG data is split into segments of smaller duration by a
moving window (viz., decision window), with an overlap of 50%.
The tail of a window in training may end up in an overlapping
segment of the test set. This kind of segment is referred to as
“repeated segment.” All the repeated segments are discarded to
keep the training, validation, and test sets mutually exclusive.
Finally, we utilize SSF representation to convert each decision
window into an EEG image.

C. Model Implementation

We conducted subject-dependent experiments on both DTU
and KUL databases. Here, the cross-entropy loss function is
adopted as the objective function. All features are encoded
within a short encoding time window, namely, Nt = 10 time-
steps [46], for SNN simulations.

Due to the discrete and nondifferentiable nature of SNNs in
spike generation, the powerful error backpropagation method
cannot directly be applied in the training process [47]. To that
end, we adopted the conversion technique proposed in [48],
which is called Tandem Learning (TL), to train the NI-AAD
model. In brief, the TL training approach is capable of linking
an SNN to a coupled ANN for parameter optimization. The
coupled ANN is an auxiliary structure that facilitates the error
backpropagation for the training of the SNN at the spike-train
level.

For the coupled ANN, the convolutional layer is conditioned
with a kernel size of 3× 3, followed by a Rectified Linear Unit
(ReLU) activation function, and an average pooling layer. The
pooling operation is performed with a pooling size of 2× 2. The
training is performed by RMSprop optimizer with a learning rate
of 3×10−4. In addition, a dropout layer with a probability of 0.3
is applied after the pooling layer and the first fully connected
(fc) layer, respectively. Meanwhile, a batch normalization layer
is exploited after the convolution layer to reduce the effect of
internal neuron distribution [49]. As well, an early stopping
scheme is utilized to avoid overfitting, where the training stops
when no loss reduction is found for 10 consecutive training
epochs. To avoid data bias, we perform the experiments with
10 random splits of data for each subject. All hyperparameters
given above were determined by running a grid search over a
set of reasonable values. Performance during this grid search
was measured on the validation set. Consistent with previous



672 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 52, NO. 4, AUGUST 2022

Fig. 3. AAD accuracy (%) of the neural-inspired model for five different decision windows across all 16 subjects in the KUL database. These subjects are ranked
according to the accuracy for the 5 s decision window. The dashed line is a reference at 80% of detection accuracy. Statistically significant differences: ∗∗∗p <0.001.

studies [30], [31], the AAD accuracy is defined as the percentage
of correctly classified decision windows on the test set.

IV. RESULTS

A. Attention Decoding Accuracy

To evaluate how the proposed NI-AAD model performs on
AAD tasks, we trained our model using decision windows of
length 0.1, 0.5, 1, 2, and 5 s, respectively. For the KUL database,
the overall average AAD accuracy and the average AAD accu-
racy per subject for five different decision window sizes are
presented in Fig. 3. The proposed NI-AAD model shows a
relatively high decoding performance with an accuracy of 82.8%
(SD: 7.49) for 1s, 87.1% (SD: 6.17) for 2 s, and 91.2% (SD: 5.13)
for 5s decision window. Consistent with previous studies [6],
[30], [31], the AAD accuracy generally decreases for shorter
decision window lengths. However, we are encouraged by the
relatively high AAD result on the 0.1 s decision window 73.1%
(SD: 7.26), which could potentially be suitable for real-time
neuro-steered hearing aids. It is noted that the AAD accuracy
for the 5 s decision window is slightly lower than for the 2 s
decision window in the DTU database, which is consistent with
a previous study [32]. One possible explanation would be that
these nonlinear AAD models used direct classification instead
of stimulus reconstruction approaches. Specifically, auditory
attention is directly predicted without explicitly reconstructing
the speech envelope. Therefore, the tradeoff between AAD
accuracy and decision window length is improved, which could
be beneficial for low-latency AADs [50].

As shown in Fig. 4, the proposed NI-AAD model obtains an
average accuracy of 59.7% (SD: 3.25) for 0.1 s, 60.2% (SD:
3.30) for 0.5 s, 61.6% (SD: 3.12) for 1 s, 63.2% (SD: 2.96) for
2 s, and 61.5% (SD: 3.06) for 5 s decision window in the DTU
database, respectively. The AAD accuracy obtained for subjects
belonging to the DTU database is significantly lower than that
in KUL database, which is in line with the observation made
in [32] and [50]. One possible explanation could be that the
two speech streams arrive 60◦ to the left and 60◦ to the right of
the subject in the DTU database [44], while the speech streams
come from± 90◦ in the KUL database [43]. Therefore, it is more
challenging to differentiate the spatial locations of the target
speaker in the DTU database. Another major difference of the

Fig. 4. AAD accuracy (%) of the neural-inspired model for five different
decision windows across all 18 subjects in the DTU database. Statistically
significant differences: ∗p <0.05, ∗∗p <0.01.

DTU database compared to the KUL database is that the auditory
stimuli are presented with varying amounts of reverberation,
which might reduce the cortical speech tracking in brain [51]
and decrease the differential responses between attended and
unattended speakers [52].

B. Comparative Study

To validate the effectiveness of the proposed NI-AAD model,
we start by comparing our model with the classical linear AAD
model [6]. The linear model is reimplemented in the DTU and
KUL databases, in which the EEG signals are utilized to restore
the attended speech envelope. Note that clean individual speech
envelopes are required for the stimulus reconstruction approach.
As summarized in Table I, the NI-AAD model is markedly
superior to the linear model with an average improvement of
24.7% from 1 s to 5 s decision windows in the KUL database.
For the DTU database, the NI-AAD model is also significantly
better than the linear model with an average increase of 7.2%.
Statistical analyses are performed using IBM SPSS statistics
software and a level of significance of 0.05 is selected. Descrip-
tive statistics are employed for means and standard deviations.
The Kolmogorov–Smirnov test is used to confirm the normality
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TABLE I
AAD ACCURACY (%) COMPARISON OF DIFFERENT MODELS ON KUL

DATABASE AND DTU DATABASE FOR FIVE DIFFERENT DECISION WINDOW

LENGTHS

Linear model denotes the setting in [6], while CNN model denotes the setting
in [30].
*Here, we reimplement the SSF-CNN model in [31] with our experimental setup
for comparison.

of the data distribution, prior to selection of appropriate statis-
tical tests. AAD accuracy is significantly different between the
NI-AAD and linear models in both the KUL database (paired
t-test: p <0.001) and DTU database (p <0.001).

As stated by previous studies [14], [30], [50], [53], [54],
nonlinear methods based on deep neural networks work much
better than linear models, especially in low latency settings. We
then compare the proposed NI-AAD model with the nonlinear
CNN-based AAD model in [30]. In brief, the CNN architecture
includes a convolution layer with a kernel size of 64 × 17,
an average pooling, and two fc layers (Input: 5, hidden: 5,
output: 2). The activation function is ReLU and the loss function
is the cross-entropy. The implementation code of this CNN
model is available online. For a fair comparison, we tuned the
hyperparameters of the CNN model for both databases in the
same way we did for our NI-AAD model.

The results in Table I show that the NI-AAD model outper-
forms the model in [30] with an average increase of 5.6% across
five different decision windows in the KUL database. We also
observe a statistically significant difference between these two
models in terms of AAD accuracy (paired t-test: p = 0.0025).
Similarly, the NI-AAD model obtains a consistent improvement
of 4.7% in AAD accuracy in comparison with the CNN model
in the DTU database.

Recently, we proposed a spatio-spectral feature representation
method, i.e., SSF representation, to extract more discriminative
features for EEG-based AAD. With the SSF representation of
EEG signals, the CNN classifier [30] can achieve better AAD
performance. The combination of these two components is
referred to as the SSF-CNN model [31]. Table I provides the
overall AAD accuracies of the NI-AAD and SSF-CNN models
across all different window lengths in both KUL and DTU
databases. The proposed NI-AAD performs better than the linear
and CNN models among all decision windows, and yet is inferior
to SSF-CNN in terms of accuracy. As tabulated in Table II, we
evaluate the sparsity of the proposed NI-AAD model on KUL
and DTU databases, where the sparsity (viz., spiking rate) is
defined as the number of spikes over the number of neurons.
Herein, we observe that the proposed NI-AAD achieved average

TABLE II
SPIKING RATES OF THE PROPOSED NI-AAD MODEL ON KUL AND DTU

DATABASES FOR FIVE DIFFERENT DECISION WINDOW LENGTHS

spiking rates of 12.3% and 5.5% for KUL and DTU databases,
respectively.

Compared with the dense SSF-CNN, although our model
performs slightly worse at the same architecture, it takes full
advantage of event-driven manner and distributed connection to
show its latent superiority on computational efficiency.

V. DISCUSSION

A. Comparison of Computational Cost

In this section, we further compare the proposed NI-AAD
and the SSF-CNN model in terms of computational cost. The
total computational cost is proportional to the total amount
of floating-point (FP) operations per second (Flops), and the
total inference cost is computed based on the standard 45 nm
CMOS process [55]. In the proposed NI-AAD model, a neuron
is activated only when it receives enough input spikes to pass
over the threshold, hence inactive neurons can be put into low-
power mode to save power. Moreover, the computation of the
NI-AAD implementation is event-driven by binary spike {1, 0}
processing manner, and thus, the MAC operation reduces to
just an FP addition. While for SSF-CNN implementation, it still
requires one FP addition and one FP multiplication to conduct
the same MAC operation, which suffers from low computational
efficiency.

As summarized in Table III, the computational cost of our
NI-AAD implementation is significantly lower than the SSF-
CNN implementation (paired t-test: p<0.001) in two databases.
Compared to SSF-CNN, the NI-AAD model achieves an average
computational cost reduction of 99.27% and 99.68% in KUL and
DTU databases, respectively.

In brief, the existing EEG-based AAD architectures are com-
putationally too expensive, which is not suitable for devices with
limited resources. Our proposed NI-AAD architecture offers
tremendous energy benefits for efficient intelligent information
processing applications, such as neuro-steered hearing aids.

B. Bio-Plausible Visualization for NI-AAD

In order to obtain the visual interpretation of SNN and enhance
the understanding of the network, we employ spike activation
map (SAM) technique to visualize different time-steps after con-
volution [56]. Considering that short inter-spike-interval (ISI)
spikes have more information in a neurological system [57],
[58], SAM computes a neuronal contribution score across the
channel axis of input data to get a 2-D spatial heatmap, i.e.,
attention map. The attention map highlights neurons that carry
more information for classification over different time-steps.
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TABLE III
TOTAL COMPUTATIONAL COST COMPARISON OF THE NEURAL-INSPIRED MODEL AND THE SSF-CNN MODEL [31] ON TWO DATABASES FOR DIFFERENT DECISION

WINDOW SIZES

ESSF−CNN denotes the total computational cost of the SSF-CNN model, while ENI-AAD denotes the total computational cost of the NI-AAD model.

Fig. 5. Visualization of the internal spike representation of the neural-inspired model. (a) Attention maps of EEG signals for leftward auditory attention. Original
images are obtained by the SSF representation of EEG signals. Here, we show the attention maps of five randomly selected subjects. The attention maps are
calculated by monitoring neurons that carry more information (i.e., spikes) over different time-steps. The visualization highlights the discriminative region of the
image. The color of the cells denotes the weights with lighter color corresponding to larger weight. (b) Attention maps of EEG images for rightward auditory
attention from five randomly selected subjects.

Fig. 5 illustrates attention maps of EEG images for left-
ward and rightward auditory attention, respectively. Findings
of previous research have demonstrated that the parietal alpha
power increases over the hemisphere ipsilateral to attentional
focus compared to the contralateral hemisphere [26], [28]. The
difference in alpha power at parietal sites across hemispheres
indicates the auditory spatial attention to speech [24]. Our results
are in agreement with previous research that the attention map
of our NI-AAD model highlights the important regions, i.e.,
the parieto-occipital region, in the EEG image for decoding the
auditory attention. Specifically, when visualizing for “leftward
auditory attention,” the NI-AAD model identifies the discrim-
inative image regions, i.e., the left parieto-occipital region, as
shown in Fig. 5(a). When visualizing for “rightward auditory
attention,” the right parieto-occipital region is highlighted, as
shown in Fig. 5(b). Further, we note that the visualization varies
across each time-step underlying the fact that the NI-AAD model
looks at different regions of the same input over time to make a
binary decision.

VI. CONCLUSION

Real-world BCI systems, such as neuro-steered hearing aids,
call for fast, accurate, and energy-efficient AAD architecture. In
this study, we developed a neural-inspired model to parallel the

energy efficiency and computing functionality of the brain to
detect auditory attention, which is termed as NI-AAD. Compre-
hensive experiments show that the NI-AAD achieves relatively
high average accuracies in both the KUL and DTU databases,
especially in low latency settings. In addition, the visualization
results explain the internal spike behavior of the NI-AAD and
unleash its bio-plausible characteristics. Sparsity evaluation and
energy computation on our model demonstrate that the NI-AAD
can tolerate around 10% sparsity without considerable deterio-
ration in performance and yield around two-order of magnitude
energy efficiency of ANNs. Moreover, the proposed NI-AAD
method does not require clean speech signals. This study could
pave way for the practical implementation of AAD in real-life.

Although the performance-complexity tradeoff has not been
well optimized, the merits of the proposed NI-AAD are obvious
from the viewpoints of biological plausibility and low-power
consumption, which is also attractive to investigate tricks to
leverage their gap for future investigation.
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