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Abstract
We propose a practical solution for the implementation of key-
word spotting (KWS) system on portable devices, that features
all three properties required for battery-powered portable sce-
narios: low power usage, small footprint, and high accuracy.
In particular, we study an end-to-end KWS system with deep
residual Spiking Neural Network (SNN), perform experiments
on Google Speech Commands Dataset, and compare with both
state-of-the-art ANN and SNN models. First, the proposed
solution outperforms its ANN counterpart and other SNN in
terms of energy efficiency. Second, it requires a smaller foot-
print (86.5K) than other ANN and SNN (210K) models. Third,
in terms of classification accuracy, it outperforms the existing
power-efficient SNN benchmark by 4% to 17%. The proposed
solution is an example of the unparalleled performance of spik-
ing neural network in real-world applications.
Index Terms: Keyword spotting system, Portable devices,
Deep spiking neural networks, Power efficiency

1. Introduction
Portable devices, such as smart watches, smart speakers, smart
phones, and autonomous cars have become the nexus of AI
technologies. In particular, they are often constrained by the
portable nature. Under these scenarios, AI applications must
satisfy three requirements simultaneously: (1) low energy con-
sumption; (2) small memory footprint; and (3) high accuracy.

In this paper, we propose an end-to-end keyword spotting
(KWS) system with deep residual spiking neural network that is
particularly suitable for portable scenarios and fulfills all three
requirements. KWS is a low-cost solution for automatic speech
recognition (ASR) system that only detects a relatively small
set of predefined keywords. In contrast to ASR system which
works continuously, the KWS system passively recognizes the
predefined wakewords, such as “Hey Siri”, “Hi, Alexa”, and
etc., to activate the smart device ready for subsequent tasks.

Recently, artificial neural networks (ANNs) for KWS have
seen remarkable performance that represents the state-of-the-
art [1, 2, 3, 4]. However, these implementations are often com-
putationally expensive [1, 3]. To tackle this problem, abundant
model compression techniques are implemented [5, 6, 7, 8].
The model size is reduced by 10x, but the number of parameters
is still considerably large especially when compared to other
low-energy solutions. In addition, these KWS systems typi-
cally utilize hand-crafted speech feature extractors (i.e., front-
end), such as Mel Frequency Cepstral Coefficients (MFCC) and
log-mel spectrum, that require Fourier transformations. These
front-ends are computationally expensive and may not be feasi-
ble on resource-constrained devices. Therefore, we propose an

end-to-end KWS system using time-domain 1D convolutions to
replace the hand-craft front-end, where the raw audio waveform
is directly fed into the model.

Spiking neural networks (SNNs) mimic the biological neu-
rons that process information with action potential (i.e., spike)
in massive parallel. Hence, on the basis of this asynchronous
feature, SNNs possess higher computational potential in com-
parison with ANNs [9]. It has been proved that the accumulate
(AC) operation is more energy-efficient and compact compared
with Multiply-and-Accumulate (MAC) operation, that is, 14x
lower energy and 21x fewer spatial area on the Global Foundry
28 nm chip [10]. In addition, because the SNN event-driven
feature is particular suited for speech signal processing, there
are plentiful success implementation of SNN-based ultra-lower
power speech related tasks [11, 12, 13, 14, 15, 16]. Therefore,
the benefits of SNN and its successful implementations in other
tasks motivates us to build a KWS system based on SNN.

However, the SNN-based KWS systems from [17, 18] are
limited on shallow networks (less than 4 layers), which lim-
its their capability to achieve better performance. It remains a
challenge to train large-scale SNN due to the discrete and non-
differentiable nature of SNN. Recently, a layer-wise ANN-to-
SNN conversion method namely, progressive tandem learning
(PTL) algorithm [19], has been proposed to enable deeper SNN
training with few accuracy loss. Motivated by this work, we de-
velop an enhanced PTL version and train a deep residual SNN
for KWS.

In the end-to-end KWS system, a speech encoder is de-
signed using 1D convolutional layers [20] in place of a spectral
analyzer for computational efficiency. As the information pro-
cessing is completely spike-based in the entire model, the sys-
tem is a fully event-driven solution. In addition, we enhance the
layer-wise PTL algorithm with block-wise residual conversion.
We seek to achieve power and footprint efficiency as well as
accuracy through the model design. First, with the end-to-end
design, our model achieves a fully convolutional architecture
which is of smaller footprint than existing models with hand-
crafted front-end and hidden fully connected layers. Second,
the SNN implementation allows for improved power-efficiency
over the ANN counterpart. Lastly, we improve the PTL algo-
rithm so that we can scale up to a deeper SNN for higher KWS
accuracy. To the best of our knowledge, our solution is the first
research to implement deep residual SNN model for end-to-end
KWS tasks and satisfies all three requirements for portable de-
vices, and provides the highest accuracy conditional on lowest
energy usage when compared to counterparts.

This paper is organized as follows. In Section 2, we formu-
late the SNN-based KWS system. In Section 3, we report the
experiments. Finally Section 4 concludes the study.

Interspeech 2022
18-22 September 2022, Incheon, Korea

Copyright © 2022 ISCA 3023 10.21437/Interspeech.2022-107



2. KWS with Deep Residual SNN
In Fig.1, we show a system architecture that consists of a multi-
layer 1D convolution front-end, which converts raw audio to
spike trains, and a deep residual SNN (spiking ResNet8 in this
work) for keyword recognition.
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Figure 1: The proposed end-to-end KWS system. It consists of
Nenc = 2 1D convolutional layers for front-end and NRes =
3 ResNet blocks in the classifier. The PTL algorithm converts
ANN to SNN, both sharing the weights, layer-wisely (block-
wisely for ResNet block).

2.1. Feature Extraction using 1D Convolution

The design of feature extraction front-end, i.e. feature extractor,
is motivated by SpEx [21], which applies a 1D convolution to
encode the raw audio waveform into spectrum-like feature map.
The 1D convolution convolutes over the time series. Its chan-
nels are treated as different filter banks in frequency-domain.
This time-domain encoding is different from hand-craft meth-
ods in that the parameters are not pre-defined as sines or cosines,
but fully data-driven. Moreover, to enhance the time-domain
encoder with larger receptive field, inspired by wav2vec 2.0
[20], we develop a multi-layer convolutional feature extractor
that consists of four blocks containing a time-domain 1D con-
volution followed by batch normalization and ReLU activation
function.

To process information in SNNs, we need to convert the
analog-valued raw audio into spike trains. The analog value
is treated as the input current fed into the spiking neuron and
added to its membrane potential. Then, the spike trains are gen-
erated by distributing the membrane potential over consecutive
time steps according to the neuronal dynamics, and they start
from the output of the first SNN layer which performs neural
encoding.

2.2. Network Architecture

We employ a deep network structure, ResNet, and study a learn-
ing algorithm for deep SNN. The residual block is the basic
component of ResNet. Fig. 2(a) illustrates the l-th block of a
typical spiking ResNet (sResNet) [22, 23, 24]. ol−1[t] and ol[t]
are the input and output at time step t. In Fig. 2(a), fn denotes a
block that contains a convolutional layer and batch normalized
layer. Θ is the step function of spiking neuron as described in

Eq. (3). U l
n[t] denotes the membrane potential of fn and oln[t]

denotes the spike generated by fn. We have the input-output
mapping of this sResNet block as,

ol[t] = Θ(U2[t] + U3[t]− ϑ). (1)

When both U2[t] and U3[t] are below the threshold ϑ, Θ
is not supposed to generate an output spike. However, if the
sum of U2[t] and U3[t] is greater than the threshold, the resid-
ual block will generate a spike at time step t, which is undesired.
We propose the sResNet block B, as shown in Fig.2(b) to miti-
gate this issue, where the input-output mapping of this sResNet
block can be formulated as,

ol[t] = Θ(U2[t]− ϑ) + Θ(U3[t]− ϑ). (2)

Hence, only when both U2[t] and U3[t] exceed the threshold,
the residual block will then output a spike.

As Eq. (1) accumulates the membrane potential first before
generating the spikes while Eq. (2) directly accumulates the
spikes. We expect that Eq. (2) is more accurate than Eq. (1)
when inducing activation values. We conduct experiments on
both A and B blocks, and find that block B has lower conversion
accuracy loss than A (1.97% vs. 3.08%). Therefore, we adopt
sResNet block B for all the experiments next.

(a) sResNet Block A (b) sResNet Block B

Figure 2: The residual blocks in a spiking ResNet (sResNet).

2.3. Bridging between Analog and Spiking Neurons

We use the Non-Leaky Integrate and Fire (NLIF) model with
reset scheme [10] which is a widely used spiking neuron model
[18, 17, 25]. At each time step t, the state of neuron j can be
represented by its membrane potential Uj [t]. Fig. 3(a) illus-
trates the computational process of spiking neuron, which ac-
cumulates the incoming spike trains and generates the outgoing
spikes once the membrane potential exceeds the firing thresh-
old ϑ, and the resulting outgoing spike trains are denoted by
oj [t] ∈ {0, 1} which is described by the following process:

olj [t] = Θ
(
U l

j [t]− ϑ
)

with Θ(x) =

{
1, if x ≥ 0;

0, otherwise.
(3)

Since the feature representation is encoded and represented by
the total spike count, we assume that the spike trains are evenly
distributed over time; therefore, the sub-threshold membrane
potential of neuron j in layer l across the simulation time win-
dow T is:

U l
j =

∑

i

wl−1
ji cl−1

i + bljT, cl−1
i =

T∑

t

ol−1
i [t]. (4)
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where wl−1
ji represents the synaptic weight between neuron i

and j, bli denotes the constant injecting current to neuron j in
layer l, and cl−1

i denotes the total count of incoming spike trains
from pre-synaptic neuron i at layer l − 1.

Fig. 3(b) depicts the the computational model of analog
neuron, which the process is described by

al
j = f(

∑

i

wl−1
ji xl−1

i + blj), (5)

where al
j and xl−1

i are the output and input of the analog neu-
ron respectively; wl−1

ji and blj denotes the weight and the bias.
f(·) is the activation function. Note that by treating bljT as the
bias term and cl−1

i as input, Eq. (4) is exactly the same as the
pre-activation of analog neurons in ANN. With this link, the
SNN layers are capable to couple with ANN layers for parame-
ter sharing.
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Figure 3: Neuron model of SNN and ANN

2.4. Progressive Tandem Learning for Deep SNN

Our purpose is to build a deep SNN to spot multiple keywords,
which is a multi-class classification task. Training a deep SNN
remains a challenge. We pre-train an ANN model that has the
same structure as the SNN model, but with different neuronal
functions. The ANN model consists of two parts: (1) the feature
extractor described in Section 2.1; and (2) the classifier using
the famous eight-layer residual network (i.e., ResNet8).

Empirical evidences have shown that an ANN of over 10
layers may converge easily, while an SNN of the same depth
finds it difficult to converge [19]. This is because gradient ap-
proximation error is prone to accumulate over layers in deep
SNN training algorithms, which adversely affects the learning
process.

To address this issue, we adopt the progressive tandem
learning (PTL) algorithm [19] for an SNN with the NLIF neu-
rons introduced in Section 2.3. The PTL algorithm allows the
SNN model to benefit from the ANN model in terms of effec-
tive back-propagation and high modeling accuracy. It performs
fine-tuning layer by layer, which can effectively overcome the
accumulated gradient approximation errors and scale-up freely
to deep SNNs. As illustrated in Fig.1, this algorithm consists of
both SNN and ANN coupled through weight sharing. The SNN
layers are used to propagate the exact representation in spike
trains and spike count to subsequent SNN and ANN layers. The
synchronized ANN layers work as an auxiliary structure to fa-
cilitate the error back-propagation path during training.

In this layer-wise conversion method, it takes L stages to
finish the conversion and the fine-tuning process for ANN with
L layers. In each stage, the conversion process terminates as
soon as the accuracy of hybrid model is not improved after a
pre-defined patience period Tp, and enters the next stage for
subsequent layer training.

However, such layer-wise conversion method is incompati-
ble with the residual block that involves the shortcut connection.
We extend the PTL algorithm with additional block-wise con-
version function especially for the residual block, in which the
conversion and the fine-tuning processes are performed on the
whole sResNet block described in Section 2.2.

3. Experiment
3.1. Dataset

We use the Google Speech Commands (GSC) dataset [26] for
experiments. The dataset is split into training, validation, and
test sets at a ratio of 8:1:1 following [26]. The GSC dataset in-
cludes 30 short commands for version 1 (V1) and 35 for version
2 (V2) by 1,881 and 2,618 speakers respectively. However, for
ease of comparison, we conduct experiments on the same task
as that in the prior work on SNN, which only recognizes 12
classes, that include 10 commands, namely, “yes”, “no”, “up”,
“down”, “left”, “right”, “on”, “off”, “stop” and “go”, and two
additional classes, namely silence, and an unknown class. The
unknown class covers the remaining of 20 (25) speech com-
mands in the set of 30 (35). The number of training samples
varies from 1,300 to 1,800 per command.

We add 10% of the silence samples to each of training,
validation, and test sets. The silence class is artificially gen-
erated by extracting one-second clips from background noise
files. With V1, this results in 56,196 training, 7,477 validation,
and 7,518 test utterances, while with V2, it results in 93,327
training, 10,979 validation, and 12,105 test utterances.

During the training, three data prepossessing approaches
are applied with probability 0.5 to obtain better performance.
The first approach is to randomly scale amplitude of audio
within the range of [0.7, 1.1]; the second approach is to ran-
domly change the speed of audio within the range of [0.8, 1.2];
and the third approach is to randomly shift the timing of audio
within the range of [-0.2, 0.2] seconds. We mainly focus on V2
but also report results on V1, because many previous published
KWS works reported the results only on the first version.

3.2. Experimental Setup

The time-domain feature extractor contains two blocks and the
1D convolutions in each block using channels (128, 32) with
strides (20, 2), kernel (40, 4) and dilation size (1, 2).

During the ANN pre-training, following the ResNet formu-
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lation [27], we utilize stochastic gradient descent with momen-
tum of 0.9 as the optimizer and cross-entropy loss function. We
set the initial learning rate to 1e-2 which reduces by 10x every
40 epochs, the mini-batch size as 32, and the weight decay as
1e-5. During the ANN to SNN conversion, the patience period
Tp is set to 8 based on the total training epoch and network
depth. The encoding time window is set as 32 to reduce the gap
between ANN and SNN representations. All models are im-
plemented with PyTorch and accuracy is reported for the whole
test set.

3.3. Accuracy and Model Size

We report the result in terms of test accuracy and parameters
(i.e., model size), and compare with the SOTA KWS models
in Table 1. It is worth noting that the MFCC and log-Mel co-
efficient front-end need to compute fast Fourier transformation
(FFT), in which the complexity is O(N logN) where N is com-
monly used as 256 or 512 in KWS tasks. Therefore, we approx-
imately estimate the parameters of the MFCC and log-Mel co-
efficient front-end as 100k based on the Perf calculation, which
is a command-line tool for Linux kernel performance monitor-
ing. Since the parameters of SOTA models exclude the compu-
tational expensive hand-crafted front-end while the parameters
of our model include the 1D convolutions front-end, we add
the estimated front-end parameters to SOTA models for a fair
comparison. It is evident that our system requires far less pa-
rameters.

For accuracy, our model achieves 92.2% and 92.9% on the
GSC dataset V1 and V2. Our model outperforms the SNN-
based models [17, 18], and is closer to the accuracy of ANN-
based models [28, 29, 30]. This result shows that the deep SNN
has a higher capacity than a shallow SNN, thus better perfor-
mance.

Table 1: A summary of KWS accuracy and model size. All
SNN-based models are based on Non-Leaky Integrate-and-Fire
(NLIF) neurons. The numbers in parentheses of the last column,
if any, represent the estimated number of parameters account-
ing for feature extraction front-end.

Model Network Acc. Params. (est.)
(%) (K)

Google Speech Commands Dataset Version 1
Attention RNN [29] ANN 95.6 202 (302)
Res8 [28] ANN 94.1 110 (210)
ConvNet on raw WAV [30] ANN 89.4 700
NLIF full SNN [18] SNN 87.9 120 (230)
E2E residual SNN (ours) SNN 92.2 86.5

Google Speech Commands Dataset Version 2
Attention RNN [29] ANN 96.9 220 (320)
Rate-based SNN [17] SNN 75.2 117 (217)
E2E residual SNN (ours) SNN 92.9 86.5

3.4. Energy Efficiency

In terms of energy efficiency, we calculate the total synap-
tic operations SynOps for our model following the norm of
the Neuromorphic Computing community [31, 10, 32]. For
ANN model, the total SynOps (i.e., Multiply-and-Accumulate

(MAC)) required is defined as below:

SynOps(ANN) =
L∑

l

f l
inNl, (6)

where the f l
in is the fan-in connections to the neuron in layer l,

Nl is the number of neurons in layer l, and L is the total layers
of network. For SNN model, the total SynOps (i.e., Accumulate
(AC)) required is defined as below:

SynOps(SNN) =
T∑

t

L−1∑

l

Nl∑

j

f l
out,jo

l
j [t], (7)

where the f l
out,j is the fan-out connections from neuron j in

layer l to neurons in the next layer, Ns is the simulation time
window, and olj [t] is the occurrence of spike from neuron j.

To compare energy efficiency, we report the ratio of aver-
age synaptic operations of SNN to ANN. The ratio is 1.46 when
computed using a single mini-batch of data during inference.
According to a recent study [10], the AC operations in SNN is
14x cheaper and 21x more compact compared with MAC oper-
ation in ANN when implemented on the Global Foundry 28nm
chip. Hence, our SNN model achieves more than 9 times energy
saving over the ANN counterpart, and the saving can be further
boosted on neuromorphic hardware.

4. Conclusions
We present an end-to-end KWS system for low-resource set-
tings based on a deep residual SNN model. By utilizing the
1D convolutions to replace the computationally expensive hand-
craft front-end (e.g., MFCC), it enables the end-to-end KWS so-
lution for resource-constrained devices. In addition, this model
adopts the enhanced version of PTL algorithm and achieves effi-
cient deep residual SNN training. The experiment results based
on the GSC dataset show that our model is small-footprint, out-
performs the SNN-based systems in terms of accuracy, and is
closer to ANN-based accuracy. The average synaptic operation
ratio of SNN to ANN suggests that our SNN implementation
is more energy-efficient when compared to ANN counterparts.
We also plan to implement our solution on neuromorphic hard-
ware.
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