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Abstract In this paper, a reweighted l1 normpenalty algorithm for direction of arrival (DOA)
estimation in monostatic multiple-input multiple-output radar is proposed. In the proposed
method, exploiting the inherent multidimensional structure of received data after matched
filtering, the singular value decomposition (SVD) technique of the data matrix is employed
to reduce the dimension of the received signal. Then a novel weight matrix is designed
for reweighting the l1 norm minimization by exploiting the coefficients of the reduced-
dimensional Capon (RD-Capon) spatial spectrum. The proposed algorithm enhances the
sparsity of the solution by the reweighted l1 norm constraint minimization, and the DOAs
can be estimated by finding the non-zero rows of the recovered matrix. Owing to utilizing
the SVD technique and the novel weight matrix, the proposed algorithm can provide better
angle estimation performance than RD-Capon and l1-SRACV algorithms. Furthermore, it is
suitable for coherent sources and has a low sensitivity to the incorrect determination of the
source numbers. The effectiveness and superior performance of the proposed algorithm are
demonstrated by numerical simulations.
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1 Introduction

Direction of arrival (DOA) estimation of far-field narrowband signal has been drawn consider-
able attention in the past fewdecades (Krim andViberg 1996).Multiple-inputmultiple-output
(MIMO) radar uses multiple antennas to simultaneously transmit diverse waveforms instead
of coherent waveforms and utilizes multiple antennas to receive the reflected signals. It has
been verified thatMIMO radar has a lot of potential advantages over the conventional phased-
array radar (Li and Stoica 2007, 2008; Liao andChan 2015; Xu et al. 2008; Huang et al. 2013;
Zheng and Chen 2015). Many high-resolution algorithms have been developed for MIMO
radar such as reduced-dimensional Capon (RD-Capon) (Zhang et al. 2012), conjugate-unitary
ESPRIT (CU-ESPRIT) (Wang et al. 2013) and reweighted subspace fitting algorithms (Hu
et al. 2012). However, most of methods mentioned above are based on the subspace tech-
nique, which will bring about rank loss in the covariance matrix of received data when the
sources are coherent, and lead to parameter estimation performance degradation.

Recently, sparse signal representation (SSR) theory has attracted a significant interest in
DOA estimation and a lot of algorithms have been proposed in this issue (Donoho et al. 2006;
Malioutov et al. 2005; Yin and Chen 2011; He et al. 2014; Candes et al. 2008). The sparse
signal representation process can be regarded as a l0 norm approximation problem. However,
it has been pointed in Donoho et al. (2006) that l0 norm approximation problem is NP-hard,
and sensitive to noise. In Malioutov et al. (2005) cast the DOA estimation problem into a
sparse signal recovery problem and the l1-SVD approach is proposed to enforce the sparsity
of the solution, in which the SVD technique is used to simplify calculation. Additionally, Yin
and Chen use the sparse representation of the array covariance vectors (SRACV) for DOA
estimation in Yin and Chen (2011). Although the l1 norm minimization is a convex problem,
an important drawback of the l1 norm is the undemocratic penalty for large coefficients. To
deal with the issue, a lot of iterative reweighted l1 minimization algorithms (He et al. 2014;
Candes et al. 2008) were designed to discourage non-zero entries in the recovered signals.
However, the DOA estimation problem in monostatic MIMO radar is usually encountered
withMMVproblem, and the iterative algorithms are not suitable forMMVproblemanymore.
On the other hand, the methods mentioned above are based on l1 norm minimization, the
sparsest solution of l1-norm penalty does not approximate to the l0 norm penalty effectively.

In this paper, in order to better enhance the sparsity of the solution, we present an improved
reweighted l1 norm penalty algorithm for direction of arrival (DOA) estimation in monostatic
MIMO radar. The proposed algorithm includes three steps: (i) utilize the SVD technique
to reduce the computational complexity of the sparse reconstruction and the sensitivity to
noise. (ii) use Lagrange multipliers to solve a constrained estimation problem, then the
coefficients of the RD-Capon spatial spectrum are exploited to design a weight matrix for l1
norm minimization. (iii) formulate a reweighted l1 norm constraint minimization to enforce
the sparsity of the solution forMMVproblem, then theDOAestimation is obtained by finding
the non-zero elements of the recovered matrix. Due to exploit the SVD technique and the
weight matrix, the angle estimation performance of the proposed method is better than RD-
Capon and l1-SRACV algorithms especially in low SNR region. Additionally, the proposed
algorithm is capable of handing with coherent sources without requiring any decorrelation
operation, and performs well without knowing a priori knowledge of the number of sources.

The reminder of this paper is organized as follows. In Sect. 2, we briefly depict data
model. In Sect. 3, the reweighted l1 norm penalty algorithm for DOA estimation is proposed.
The performance analysis of the proposed method and the Cramer–Rao bound are given
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in Sect. 4. Several simulation results verify the performance of the proposed algorithm in
Sect. 5. Conclusions are given in Sect. 6.

Notation: (·)H , (·)T , (·)−1, (·)∗, (·)+ represent theHermitian transpose, transpose, inverse,
complex conjugate, pseudo inverse, respectively. ⊗ denotes the Kronecker operator, and �
denotes the Khatri–Rao matrix product. diag(·) and blkdiag(·) denotes the diagonalization
operation and block diagonalization operation, respectively. Re(·) denotes the real-part oper-
ation, and vec(·) denotes a matrix operation that stacks the columns of a matrix under each
other to form a new vector. IM and 0M are a M × M dimensional unit matrix and a M × M
diagonal matrix with all elements equal 0, respectively. Furthermore, ‖·‖1, ‖·‖F and (·)l2
represent the l1 norm, Frobenius norm and l2 norm of each row of the matrix, respectively.

2 Data model

Consider a narrow-band monostatic MIMO radar system with M transmit sensors and
N receive sensors, and both of transmit and receive array are uniform linear arrays
(ULAs), shown in Fig. 1. It is assumed that there are K far-field signals with directions
θ = [θ1, θ2, . . . , θK ]. The inter-element spaces of the transmit and receive arrays are half-
wavelength,M transmit antennas emitM different orthogonal narrowbandwaveforms,which
have identical bandwidth and centre frequency.According toChan et al. (2014), aftermatched
filtering, the output at the receive array can be expressed as

x(t) = As(t) + w(t) (1)

where s(t) = [s1(t), s2(t), . . . , sK (t)]T is the K × 1 zero-mean signal vector, w(t) is the
MN × 1 Gaussian white noise vector with zero mean and covariance matrix σ 2IMN · A is

Fig. 1 The configuration of monostatic multiple-input multiple-output (MIMO) radar
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an MN × K array manifold matrix, depending on the unknown DOAs, which can be written
as

A = A1 � A2 ∈ C
MN×K (2)

A1 = [at (θ1), at (θ2), . . . , at (θK )] ∈ C
M×K (3)

A2 = [ar (θ1), ar (θ2), . . . , ar (θK )] ∈ C
N×K (4)

at (θk) = [1, exp( jπ sin θk), . . . , exp( jπ(M − 1) sin θk)]T (5)

ar (θk) = [1, exp( jπ sin θk), . . . , exp( jπ(N − 1) sin θk)]T (6)

By collecting L snapshots, the received data can be rewritten as

X = AS + W (7)

where X = [x(t1), x(t2), . . . , x(tL )] is a data matrix, S = [s(t1), s(t2), . . . , s(tL )] is source
waveform matrix andW = [w(t1),w(t2), . . . ,w(tL)] is sensor noise matrix.

3 Reweighted l1 norm penalty for DOA estimation

In this section, we firstly formulate the DOA estimation into a sparse signal representation
problem in monostatic MIMO radar. In order to reduce both the computational complexity
and the sensitivity to noise, the singular value decomposition (SVD) can be used for the
received data X, which is shown as

X = U�VH (8)

where U ∈ C
MN×MN ,V ∈ C

L×L are the left and right singular matrices, respectively,
� ∈ C

MN×L is the diagonal singular value matrix with the singular values arranged in
descending order.

Defining a MN × K reduced-dimensional matrix XSV, which multiplies the received
signal X by the first K columns of U, we obtain

XSV = ASSV + WSV (9)

where XSV = U�DL = XVDL,DL = [ IL 0 ]T , and 0 is a K × (T − K ) zero matrix,
SSV = SVDL ∈ C

K×K ,WSV = WVDL ∈ C
MN×K .

Let {θ̂1, θ̂2, . . . , θ̂J } be the discrete sampling grid of all potential DOAs, from −90◦ to
90◦ with 0.01◦ intervals. The number of sampling angles will typically be much greater than
the number of sources and the array sensors. i.e. J � K , M . In the sparse signal recovery
framework, the DOA estimation is confined to the grid. If {θ̂i }Ji=1 are dense enough, steering
vectors {at (θ̂k)}Kk=1 (or {ar (θ̂k)}Kk=1) can be expected to be very close to {at (θ̂k)}Kk=1 (or
{ar (θ̂k)}Kk=1). Then constructing a two-dimensional transmit–receive dictionary composed
of steering vectors corresponding to the potential DOAs.

A
θ̂

= Â1 � Â2 ∈ C
MN×J (10)

Â1 = [at (θ̂1), at (θ̂2), . . . , at (θ̂J )] ∈ C
M×J (11)

Â2 = [ar (θ̂1), ar (θ̂2), . . . , ar (θ̂J )] ∈ C
N×J (12)

In the SSR framework,A
θ̂
is known and contains all the information ofA. If the DOAs are

on or close to the discrete sampling grid, under the sparse signal representation framework,
the model in Eq. (9) can be rewritten as
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XSV = A
θ̂
S

θ̂
+ WSV (13)

where S
θ̂
is a J×K sparse matrix whose j th row corresponding to a potential DOA θ̂ j . Since

S
θ̂
and SSV have the same row support, DOA estimation based on Eq. (13) is equivalent to

find a sufficiently sparse of S
θ̂
. The sparse recovery process can be regarded as the l0 norm

constrain minimization problem. However, the l0 norm minimization problem is nonconvex,
NP-hard and thereby cannot be solved. The l1 norm penalty instead of l0 norm penalty is used
to solve the issue (Malioutov et al. 2005). In order to obtain S

θ̂
, the constraint minimization

problem is considered as following

min
SSV

∥
∥
∥S(l2)

θ̂

∥
∥
∥
1

s.t.
∥
∥XSV − A

θ̂
S

θ̂

∥
∥
F ≤ β̃ (14)

where β̃ is the regularization parameter. After obtaining the recoverymatrix, DOA estimation
is converted into finding the position of the nonzero entries in S(l2)

θ̂
. In Eq. (14), although

the l1-SVD algorithm can guarantee the convergence to global minima easily, the important
drawbacks of the l1 norm are the undemocratic penalty for large coefficients, and the sparsest
solution of l1-norm penalty does not approximate to the l0 norm penalty effectively, which
results in the degradation of sparse signal reconstruction performance.

Now, in order to deal with these above problems, a reweighted l1 norm penalty algorithm
for theMMVproblem is proposed by utilizing coefficients of the RD-Capon spatial spectrum.
According to the Zhang and Xu (2010), the RD-Capon function can be obtained by solving
the following constrained minimization problem (Zhang and Xu 2010)

f (θ̂) = arg max
eT at (θ̂ )=1

at (θ̂)HQ(θ̂)at (θ̂) (15)

whereQ(θ̂) = [ar (θ̂)⊗IM ]HEsEH
s [ar (θ̂)⊗IM ], and e = [1, 0, . . . , 0]T . Utilizing Lagrange

multipliers to solve the constrained minimization problem, we can obtain the RD-capon
spectrum function as

f (θ̂) = argmax
θ̂

eTQ(θ̂)−1e (16)

Computing the solution of eTQ(θ̂ )−1e over θ ∈ (−90◦, 90◦), the K largest peaks of the
conventional RD-Capon for estimating DOA can be obtained, but it is not what we focus
on. Our aims are to recover the sparse signal matrix and achieve the high-resolution based
on the designed weight matrix. Hence the coefficients of the RD-Capon spatial spectrum are
exploited to design a weight matrix for achieving the high resolution. Then the coefficients
of the RD-Capon spatial spectrum can be constructed, which is shown as

H = [h(θ̂1), h(θ̂2), . . . , h(θ̂J )] = [H(1),H(2)] (17)

where h(θ̂) = 1/
(

eTQ(θ̂)−1e
)

. The weight vector H can be divided into two parts: H =
[H(1),H(2)],H(1) is composedwith coefficients ofRD-Capon spatial spectrumcorresponding
to the possible targets andH(2) is composedwith the residual coefficients ofRD-Capon spatial
spectrum. Then the weight matrix can be formulated as follows

Ŵ = diag
([H(1),H(2)]

)

/max(H(2)) (18)

when the snapshots T → ∞, the weight vectors H1,i → 0 and H2,i > 0. Consequently,
owing to the characteristic of the RD-Capon algorithm that the entries ofH1 are smaller than
those ofH2, i.e.H

l2
1,i/max(H2) < H2,i/max(Hl2

2 ). And the weighted matrix Ŵ is presented

to handle the multiple measurement vectors problem, in which the weight matrix Ŵ is used
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to achieve the idea that the entries who are more likely to be zero in recovered matrix are
penalized by larger weights and the other entries are punished by small weights. Lastly, the
reweighted l1 norm constraint minimization for sparse signal recovery can be formulated as
follows

min
SSV

∥
∥
∥ŴS

(l2)

θ̂

∥
∥
∥
1

s.t.
∥
∥XSV − A

θ̂
S

θ̂

∥
∥
F ≤ β̃ (19)

By vectorizing the matrices in Eq. (19), we can get its alternative formulation.

min
SSV

∥
∥
∥ŴS

(l2)

θ̂

∥
∥
∥
1

s.t.
∥
∥X̄SV − Ā

θ̂
S̄

θ̂

∥
∥
F ≤ β̃ (20)

where X̄SV = vec(XSV), S̄
θ̂

= vec(S
θ̂
), and Ā

θ̂
= blkdiag(A

θ̂
, . . . ,A

θ̂
) is an block diagonal

matrix. The Eq. (20) can be efficiently calculated by SOC (second order cone) programming
software packages such as SeDuMi (Sturm 1999) and CVX (Grant and Boyd 2012). Then
the DOA estimates are obtained by plotting S(l2)

θ̂
, solved from (20).

As shown in the Eq. (20), the regularization parameter β̃ balances the fitness of the solution
to data with the sparsity prior, so it is important to choose the regularization parameter β̃

properly.Generally speaking,when noise is independent and identically distributedGaussian,
‖WSV‖F has a χ2 distribution with M2 × K degrees of freedom, so setting the probability
p = 0.01 to determine the value of β̃ is good enough, where its Matlab-based calculation is
via the function chi2inv(1 − p, M2 × K ).

4 Performance analysis and Cramer–Rao bound

Remark 1 As a rough rule of thumb, the weights should relate inversely to the true signal
magnitudes. As shown in Eq. (18), the proposed method uses Lagrange multipliers to solve a
constrained estimation problem, and then the coefficients of the RD-Capon spatial spectrum
are exploited to design a weight matrix for l1 norm minimization. Owing to having S(l2)

j ≤
√

1
W j

, if S(l2)
j corresponds to the actual signal, Ŵ j is relatively small and Ŵ jS

(l2)
j will

approach to 1. Otherwise, Ŵ j is relatively large and Ŵ jS
(l2)
j will approach to 0. Therefore,

the weights can counteract the influence of the signal magnitude of the l1 norm penalty
function.

Remark 2 Regarding the computational complexity, the main complexity of the pro-
posed algorithm is in constructing the weighted matrix and solving the reweighted
l1 norm constraint minimization. The formulation of the weighted matrix requires
O

{

LM2N 2 + M3N 3 + J (M3N + M3N + M2)
}

, and solving the sparse signal recon-
struction process requires O(K 3 J 3). Thus, the computational complexity of the proposed
method is O

{

LM2N 2 + M3N 3 + J (M3N + M3N + M2) + K 3 J 3
}

. While the computa-
tional complexity of the RD-Capon is O

{

LM2N 2 + M3N 3 + J (M3N + M3N + M2)
}

,
and the main computational cost of the l1-SRACV method is also the sparse signal recon-
struction process, which requires O(K 3 J 3). Although the computational complexity of the
proposed method is higher than RD-Capon method and l1-SRACV algorithm, the proposed
algorithm can achieve high-resolution than both of them, because the weight matrix can
enhance the sparsity and achieve more accurate estimation.
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According to Stoica and Nehorai (1990), we derive the Cramer–Rao bound (CRB) of the
DOA estimation in the monostatic MIMO radar as follows:

CRB = σ 2

2L

{

Re
[

(DH�⊥
AD ⊕ PT )

]}−1
(21)

where ⊕ represents the Hadamard product, P = 1/L
∑L

l=1 s(tl)s
H (tl) ∈ CK×K ,�⊥

A =
IMN − A(AHA)−1AH ∈ CMN×MN ,D = [d1,d2, . . . ,dK ] ∈ CMN×K ,dk = ∂(at (θk) ⊗
ar (θk))/∂θk .

5 Simulation results

In this section, the performance of the proposed algorithm is investigated, and compared
with RD-Capon (Zhang et al. 2012), l1-SRACV (Yin and Chen 2011), and CRB in Eq. (21).
Assumed multiple narrow-band far-field signals impinge on ULA of sensors from directions
as θ1 = −10◦, θ2 = 5◦, θ3 = 10◦, the inter-element spacing is half a wavelength and both of
the transmit arrays and receive arrays are ULAs. Besides, 100 Monte Carlo trials are carried
for statistical calculation. The direction grid is uniform with 0.01◦ sampling from −90◦ to
90◦ and the confidence interval for choosing the regularization parameter is set as 99% in
all algorithms. In the following simulations, we defined the signal-to-noise ratio (SNR) as

SNR = 10log10
(‖AS‖2F / ‖W‖2F

)

. (22)

In the paper, the root mean square error (RMSE) that evaluates the performance of DOA
estimation is defined as follows:

RMSE =
√
√
√
√

1

100K

100
∑

i=1

K
∑

k=1

(θ̂k,i − θk)
2

(23)

where θ̂k,i is the estimate of DOA of the kth signal in the i th Monte Carlo trial.
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Fig. 2 Spatial spectra for RD-Capon algorithm and the proposed algorithm for uncorrelated sources
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Fig. 3 Spatial spectra for RD-Capon and the proposed algorithm for coherent sources
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Fig. 4 Sensitivity of the proposed algorithm to the assumed number of sources

Figure 2 shows the capability of characterizing three uncorrelated sources by RD-Capon
algorithm and the proposed algorithm, where M = N = 6, L = 200, SNR=0dB. Both
RD-Capon algorithm and the proposed algorithm can resolve the three sources. Besides,
the proposed algorithm can primly provide sharp peaks than RD-Capon algorithm in DOA
estimation, which means that the proposed algorithm has better high resolution.

Figure 3 compares the spatial spectra obtained by RD-Capon algorithm and the proposed
algorithm for three coherent sources, where M = N = 6, L = 200, SNR=0dB. It is shown
that without requiring any decorrelation operation, the proposed algorithm is still able to
resolve three coherent sources, whereas RD-Capon algorithm merge the peaks. This demon-
strates the high-resolution ability of the proposed algorithm. Thus the proposed algorithm
can also resolve coherent sources successfully.
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Fig. 5 RMSE of DOAs for three uncorrelated sources versus different snapshots
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Fig. 6 RMSE of DOAs for three uncorrelated sources versus different SNRs

Figure 4 further examines the sensitivity of our algorithm to the priori knowledge of the
different number of sources, where M = N = 6, L = 200, SNR=0dB. From Fig. 4, the
proposed algorithm has the small diversity in the spectra. There are two reasons as follows:
firstly, the weight matrix is used to enhance the sparsity of solution. Secondly, since the
weight matrix in the proposed algorithm does not rely on the priori knowledge of the number
of sources. Therefore, the proposed algorithm can achieve accurate angle estimation.

Figure 5 depicts the RMSE of DOA estimation produced by the RD-Capon algorithm, l1-
SRACV algorithm and the proposed algorithm with different snapshots, where M = N = 8
and SNR=0dB are used. As shown in Fig. 5, we can see that the proposed algorithm has
better angle estimation performance than RD-Capon algorithm and l1-SRACV algorithm
with snapshots increasing. The l1-SRACV algorithm is sensitive to small number of snap-
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Fig. 7 RMSE of DOAs for three uncorrelated sources versus different sensors

shots, while the proposed algorithm can reduce the sensitivity to small number of snapshots
effectively, because of the sparse representation model as well as the weight matrix we adopt.

Figure 6 shows the RMSE of DOA estimation via SNR with different algorithms, where
M = N = 8 and L = 200. We vary the SNR from −10 to 20dB in 5dB steps. From Fig. 6,
we can see that the proposed algorithm performs better than the other algorithms, especially
in low SNR. Owing to the weighted matrix designed by the RD-Capon spatial spectrum, the
proposed algorithm can enhance the sparsity of the solution effectively and be the closest to
the CRB.

Figure 7 shows that the RMSE of DOA estimation produced by the proposed algorithm
decreases monotonically with the number of antenna sensors increasing, where the number
of snapshots and SNR are set to be 200, 0dB, respectively. From Fig. 7, it can be verified
that increasing of the number of sensors is an efficient method to improve the estimation
performance.

6 Conclusion

In this paper, we have presented a reweighted l1 norm penalty algorithm for MMV prob-
lem in monostatic MIMO radar. The SVD technique is utilized to reduce the computational
complexity and the sensitivity to noise. Then a constrained minimization problem is formu-
lated, and the coefficients of the RD-Capon spatial spectrum are exploited to design a weight
matrix for reweighting l1 norm penalty minimization. Finally, the DOAs can be obtained by
solving the reweighted l1 norm constraint minimization. Simulation results verified that the
proposed algorithm can provide better angle estimation performance than RD-Capon and
l1-SRACV algorithms. In addition, the proposed algorithm is suitable for coherent sources
and not sensitive to the incorrect determination of the number of sources. Furthermore, the
sparsest solution of l1 norm penalty can approximate to the l0 norm penalty effectively, and
the RMSE of the proposed algorithm is close to the CRB.
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