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Conventional direction-of-arrival (DOA) estimators are vulner-
able to impulsive noise. In this paper, to tackle this issue, a class
of weakly convex-inducing penalties is introduced for robust DOA
estimation via low-rank matrix approximation, where �2,1-norm is
adopted as the metric for suppressing the outliers. Two iterative al-
gorithms are developed to construct the noise-free data matrix. To
avoid determining the number of sources, the DOAs are estimated
by exploiting the special joint diagonalization structure of the con-
structed signal covariance matrix. Compared with several existing
algorithms, the proposed methods enjoy faster computation, similar
DOA estimation performance against impulsive noise and requiring
no a priori information of the source number. Numerical experiments
are included to demonstrate the outlier-resistance of our solutions.
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I. INTRODUCTION

Narrowband far-field source localization using sensor
arrays has been playing a fundamental role in many ar-
eas including radar, sonar, and wireless communications
[1]–[3]. In array signal processing, this problem is also
known as direction-of-arrival (DOA) estimation. The chal-
lenge of direction finding arises from the fact that the
observed snapshots are nonlinear functions of the DOAs.
The well-known subspace-based methods, e.g., MUSIC [4],
PUMA [5], and Capon’s method [6], require that the num-
ber of sources is known a priori. Unfortunately, the source
number is usually not available in practice, and source enu-
meration is not an easy task [7]. Furthermore, these es-
timators cannot perform well in the presence of outlier-
contaminated observations as their derivations are based on
additive Gaussian noise assumption.

In practical applications, the measurement noise may
be of different kinds and exhibits non-Gaussian properties,
where impulsive noise is a typical case [8], e.g., Gaussian
mixture model (GMM) [9], compound Gaussian model
(CGM) [10], and symmetric α-stable (SαS) distribution
[11]. Since the impulsive noise can model outliers well, it
has also been widely studied in robust statistics [12], [13].
Compared with the Gaussian noise, the probability den-
sity function (PDF) of impulsive noise has heavier tails,
which exceeds a few standard deviations than the Gaus-
sian distribution. Therefore, the performance of the conven-
tional second-order statistics-based DOA estimators [14],
[15] may greatly degrade when encountering the impul-
sive noise. That is to say, they are no longer appropriate
in a non-Gaussian environment, largely due to their nonro-
bustness against even a small number of outliers. Based on
the fractional lower-order statistics, various DOA estima-
tors have been proposed to deal with the outliers, including
ROC-MUSIC [16], FLOM-MUSIC [17], and SCM/TCM-
MUSIC [18]. However, these algorithms are suboptimal
and offer a satisfactory DOA estimation performance at the
expense of requiring a large number of sample sizes. Other
robust DOA estimation algorithms such as MM-MUSIC
[19], MT-MUSIC [20], EM-MUSIC [9], and �p-MUSIC
[21], are proposed to compute the sample covariance ma-
trix and then apply conventional subspace-type technique
for direction finding, which achieve higher resolution than
the fractional lower-order statistics-based algorithms. Note
that the �p-MUSIC exhibits a number of advantages over the
conventional subspace-type algorithms and several outlier-
resistant approaches. However, the �p-MUSIC cannot work
without the prior knowledge of the number of sources, and
so is the robust G-MUSIC [22]. A DOA estimator [23] via
algebraic structure of the noise subspace has been devel-
oped for source enumeration, but it is not robust against the
impulsive noise.

Low-rank matrix approximation (LRMA) has attracted
considerable research interests in many important areas,
such as machine learning, signal and image processing,
and computer vision, especially with high-dimensional
datasets, which is also widely used in principal component
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analysis (PCA) [24]. The purpose of LRMA is to extract
the low-dimensional subspaces or principal components
of the matrices constructed from these signals. Although
PCA, which can be easily realized by the truncated singu-
lar value decomposition (SVD), is a standard tool to tackle
this task, it fails to work in the presence of non-Gaussian
disturbances and/or outliers. It is because the design of
PCA basically utilizes the �2-norm minimization or least
squares, indicating that it is only perfect for additive Gaus-
sian noise, which motivates the development of the robust
PCA (RPCA) [25], [26]. However, the RPCA is computa-
tionally demanding because full SVD is required. Since the
covariance matrix of uniform noise is an arbitrary unknown
diagonal matrix instead of a scaled identity matrix, to cir-
cumvent this problem, IRMD-MUSIC [27] is proposed to
determine the noise-free covariance matrix by nuclear norm
minimization. Furthermore, Pal and Vaidyanathan [28] have
suggested using a low-rank matrix denoising approach fol-
lowed by a MUSIC-like subspace method to estimate the
DOAs. In [29], by exploiting the Toeplitz structure of the
covariance matrix of the array output, a low-rank matrix re-
construction method for DOA estimation is devised via ap-
plying alternating direction method of multipliers (ADMM)
[30] as the solver. However, in the presence of impulsive
noise, their performance of DOA estimation will degrade
substantially.

In this paper, by adopting the LRMA framework, our de-
veloped methods are able to achieve faster computation, but
enjoy comparable DOA estimation performance in impul-
sive noise. Our contributions lie in combining the concept
of weakly convexity with LRMA framework to derive two
iterative methods for noise-free data matrix construction in
the presence of impulsive noise. Note that there is no need
for the source number information as we exploit the spe-
cial joint diagonalization structure of the constructed signal
covariance matrix. Also, no assumptions on the models of
noises and signals, and sparsity of the sensor array, are
required. Furthermore, our schemes are computationally
attractive and able to compute the spatial spectrum without
rank information.

The rest of this paper is organized as follows. In
Section II, the signal model for DOA estimation is estab-
lished and the corresponding preliminaries are introduced,
including weakly convex sparsity-inducing function and
LRMA. The proposed methods for DOA estimation are de-
rived in Section III. Numerical examples are provided in
Section IV, followed by conclusions in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Signal Model

Consider K narrow-band far-field uncorrelated sources
sk , k ∈ {1, ..., K}, impinging on a uniform linear array
(ULA) of omnidirectional (2M + 1) sensors from direc-
tions θk ∈ [−90◦, 90◦], where the distance between adja-
cent sensors is d̄ . To avoid phase ambiguity, the intersensor
spacing is set to be half the wavelength λ̄, i.e., d̄ = λ̄/2. Let
N be the number of snapshots, at the t th time instant, the

(2M + 1)× 1 array observation output is written as

x(t) =
K∑

k=1

a(θk)sk(t)+ n(t) = A(θ )s(t)+ q(t),

t = 1, . . . , N (1)

where x(t) = [x−M (t), . . . , xM (t)]T with superscript T be-
ing the transpose operator, a(θ) = [a1(θ), . . . , aM (θ)]T is
the array response to a unit-amplitude source in direction
θ , θ = [θ1, . . . , θK ]T is the source direction vector, A(θ ) =
[a(θ1), . . . , a(θK )] is the (2M + 1)×K array steering
matrix with a(θk) = [ej2πMτ (k), . . . , 1, . . . , e−j2πMτ (k)]T ,
τ (k) = d/λ̄ sin (θk), j = √−1, s(t) = [s1(t), . . . , sK (t)]T

contains the source complex signal amplitudes at time t ,
and q(t) = [q1(t), . . . , qM (t)]T is the additive noise vector
at time t .

Collecting the N snapshots, the matrix form of (1) can
be written as

X = A(θ )S+Q (2)

where X= [x(t1), . . . , x(tN )] ∈ C
(2M+1)×N, S = [s(t1), . . . ,

s(tN )] ∈ C
K×N , and Q = [q(t1), . . . , q(tN )] ∈ C

(2M+1)×N .
In the presence of impulsive noise, the PDF of q(t) has
heavier tails than the Gaussian distribution, which has a
few large values. These large values are considered as out-
liers. In this study, the noise data matrix Q is assumed a
column-wise sparse matrix. It is because when the jammer
signals arrive at some sensors at time t , these sensor outputs
corrupted by the jammers at the t th snapshot will turn to
large values, so that the element modulus of the t th column
of Q will be large with a high probability and Q is finally
a column-wise sparsity matrix when collecting all snap-
shots. Since the array steering matrix A(θ ) is of full column
rank, it can be easily verified that rank(A(θ)S) = r ≤ K

for K < (2M + 1) < N . Consequently, the noise-free data
matrix P � A(θ )S is of low-rank. We are interested in re-
covering the noise-free data matrix P from the noisy X
corrupted by Q. The noise-free data covariance matrix R is
computed as

R = 1

N
E{PPH } = A(θ )RsAH (θ ) (3)

where Rs = E{s(t)sH (t)} = diag(σ 2
s ) and σ 2

s = [σ 2
1 , . . . ,

σ 2
K ]T . Here, E{·}, H , and diag(·) denote the expectation,

Hermitian transpose, and diagonal matrix with elements
being its diagonal, respectively.

B. Low-Rank Matrix Approximation

In LRMA, it is assumed that the data lie near some low-
dimensional subspace, then the matrix should have (approx-
imately) low-rank. In order to recover the low-rank matrix P
from the given observation matrix X corrupted by the noise
matrix Q, it is straightforward to consider the regularized
rank minimization problem, which seeks the best rank-r P
by solving

min
P

rank(P), s.t. X = P+Q. (4)
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Fig. 1. Relationship between F (·) and H (·).

Unfortunately, the problem of rank minimization in (4) is
NP-hard in general because the rank is discrete and noncon-
vex. Analogous to the strategy of employing the �1-norm
instead of the �0-norm for sparse signal recovery [31], con-
vex relaxation of (4) leads to the nuclear norm minimization

min
P
||P||∗, s.t. X = P+Q (5)

where the nuclear norm ||P||∗ =
∑r

i=1 σi(P) denotes the
sum of singular values of P. In the presence of the outliers,
RPCA [26] is applied to modify (5) as

min
P,Q
||P||∗ + λ||Q||1, s.t. X = P+Q (6)

where || · ||1 denotes the �1-norm of a matrix and λ is a regu-
larization parameter. Although (6) is a convex optimization
and global minimization is guaranteed, it has a high com-
putational cost even fast algorithms are employed because
full SVD is required [24], [32]–[34].

Motivated by the fact that a weakly convex function as
an approximation of the �0-norm is able to better induce
sparsity than the �1-norm [13], [35], we propose to extend
a weakly convex function in LRMA. Another possible way
to relax (4) with function J is

min
P

J (P), s.t. X = P+Q (7)

where J (·) belongs to a class of weakly convex sparsity
inducing functions, and is defined as

J (P) �
M∑

i=1

F (σi(P)) (8)

with F (·) being a weakly convex sparseness measure. That
is, F (·) is weakly convex if and only if there exists a convex
function H (p) = F (p)+ ξp2 when ξ > 0. F (·) at ξ = 0 is
the special case of �1-norm. Taking one of weakly convex
penalties, namely, minimax concave penalty (MCP) [35] as
an example, we can see that both F (·) and H (·) are convex
at ξ = 1, while they are weakly convex at ξ = 0.5, in Fig. 1.

A class of weakly convex (nonconvex) functions has
been proposed to induce sparsity [35]. The definition is:

DEFINITION 1

1) F (0) = 0, F (·) is even and not identically zero.
2) F (·) is nondecreasing on [0,+∞).
3) F (·) is concave on [0,+∞).
4) F (·) is weakly convex on [0,+∞).

From [35, Lemma 1.1], F (p)/p→ ᾱ as p→ 0+ for
ᾱ > 0. Hence, according to Definition 1, ρ � ξ/ᾱ charac-
terizes the nonconvexity of F (·) and J (·), where ξ divided
by ᾱ is to remove the scaling effect on the penalty. The
J (·) belongs to a class of weakly convex sparsity inducing
functions in Definition 1, and possesses some “favorable”
properties so that (7) can be solved by tractable algorithms
and results in low-rank solutions. Compared to (4), the main
advantage of (7) lies in the fact that it does not require the
rank information, i.e., K . Thus, works [35]–[38] adopting
other low-rank inducing penalties in (7) empirically demon-
strate better recovery performance when compared with the
nuclear norm.

In this paper, motivated by the fact that �2,1-norm can
detect outliers with column-wise sparsity in the presence of
impulsive noise, we apply it as the metric for the residual
error to propose the following robust formulation:

min
P,Q

J (P)+ λ||Q||2,1, s.t. ||X− P−Q||2F ≤ ε (9)

where the �2,1-norm is defined as ||Q||2,1 �
∑N

j=1√∑2M+1
i=1 ([Q]i,j )2 and ε is error tolerance parameter. In

this formulation, large errors due to the outliers for each
data point are ||[Q]·,j ||, which are not squared. Herein, the
large errors do not dominate the objective function. Note
that it is easily proved that �2,1-norm is a norm because it
satisfies three conditions, namely, positive scalability, tri-
angle inequality, and existence of a zero vector [39].

III. PROPOSED DOA ESTIMATORS

A. LRMA-ADMM

In this section, to stably recover P and Q, instead of
directly solving (9), we solve the following problem:

min
P,Q

J (P)+ λ||Q||2,1 + μ

2
||X− P−Q||2F . (10)

It is well demonstrated in [40] and [41] that (10) is equiv-
alent to (9) for some pairs of λ and μ, where μ is the
penalty parameter. As a variant of the augmented La-
grangian method, ADMM is well-suited for distributed op-
timization, which utilizes a variable-splitting scheme to de-
couple components in the cost function and solves the opti-
mization problem effectively in an alternating minimization
manner. We apply ADMM to solve (10). Toward this goal,
the augmented Lagrangian of (10) is written as

L(P, Q, �) = J (P)+ λ||Q||2,1+ < �, X− P−Q

>+ μ

2
||X− P−Q||2F (11)
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where � is the dual variable, and < ·, · > denotes the stan-
dard trace inner product, i.e., < A, B >= trace(AH B). Note
that the last term of (10) is combined into μ

2 ||X− P−Q||2F .
Thus, the separable function defined in (8) can be expressed
as the Moreau envelope [42] of the weakly convex function,
i.e.,

J #(P) = min
V

{
J (V)+ λ

2
||P− V||2F

}
. (12)

If the nonconvexity parameter ρ is small enough such that
ρ < 1

2λ
[35], then the objective function in (12) is strongly

convex, and the minimizer is unique.
Now, we proceed to unveil each step of the ADMM for

problem (10). Specifically, we optimize problem (11) with
respect to one variable while fixing the others, which results
in the following subproblems.

In the (t + 1)th iteration, the update of P is

Pt+1 = arg min
P

J (P)+ μt

2
||P− (X−Qt + �t/μt )||2F .

(13)

Since F (·) is concave on [0,+∞) in Definition 1, by the
definition of the supergradient [43] and Lemma 1, we have

F (σi(P)) ≤ F (σi(Pt ))+ f (σi(Pt ))(σi(P)− σi(Pt )) (14)

where f (σi(Pt )) ∈ ∂F (σi(Pt )), and Lemma 1 is given by
[44, Proposition 4.8].

LEMMA 1 Let F (·) be a weakly convex function with pa-
rameter ρ on S ∈ {1, 2, . . . , N}. Then, the inequality

F (p2) ≥ F (p1)+ < f (p1), p2 − p1 > +ρ||p1 − p2||2
(15)

holds for all p1 ∈ intS, p2 ∈ S, and f (p1) ∈ ∂F (p1), where
|| · || denotes the induced norm of the inner product in S,
and the interior of S is denoted as intS.

Without loss of generality, for P ∈ R
(2M+1)×N with rank

K , we adopt the convention that its singular values are
arranged in nonincreasing order

σ1(P) ≥ · · · ≥ σK (P) > 0 = σK+1(P) = · · · = σ2M+1(P).

Due to the antimonotone property of supergradient, we have

0 ≤ f (σ1(Pt )) ≤ · · · ≤ f (σ2M+1(Pt )). (16)

Hence, it motivates us to minimize the right-hand side
(RHS) of (13) instead of F (σi(P)). Moreover

Pt+1= arg min
P

2M+1∑

i=1

F (σi(Pt ))+ f (σi(Pt ))(σi(P)− σi(Pt ))

+ μt

2
||Pt − (X−Qt + �t/μt )||2F

= arg min
P

2M+1∑

i=1

f (σi(Pt ))σi(P)

+ μt

2
||Pt − (X−Qt + �t/μt )||2F

=UrTλF (�r )VH
r (17)

where the global optimal solution is given by the singu-
lar value thresholding UrTλF (�r )VH

r in [45, Lemma 3]
and TλF (·) is the proximal operator of the weakly con-
vex function. The SVD of (X−Qt + �t/μt ) is defined as
(X−Qt + �t/μt ) � U[�r, 0]VH , U and V are orthogonal
matrices and �r = diag(σ 2

1 , . . . , σ 2
r ) with {σ 2

i }ri=1 being the
singular values. The corresponding truncated SVD is com-
puted as Ur�rVH

r , where Ur and Vr are composed of sin-
gular vectors corresponding to the r largest singular values
in U and V, respectively.

REMARK 1 Note that the rank information is needed in
SVD computation in (13). However, the rank information
is usually not available in practice. Here, to use prediction
rule to determine the rank information [46], we only need
those singular values that are larger than a given threshold
and their corresponding singular vectors. The prediction
rule is defined as

r̂ t+1 =
{

rt + 1, if rt<r̂t

min(rt + round(0.1d̄), d̄), if rt = r̂ t
(18)

where d̄ = min(2M + 1, N), r̂ t is the predicted rank, and
rt is the number of singular values in the r̂ t singular values
that are larger than the inverse of μt . We initialize r̂ t as
r̂0 = 9, where sgn(·) denotes the sign of a quantity with
sgn(0) = 0.

The update of Q is

Qt+1 = arg min
Q

λ||Q||2,1 + μt

2
||Q− (X− Pt+1

+ �t/μt )||2F . (19)

LEMMA 2 Let Wt = X− Pt+1 + �t/μt . Since the problem
(19) is convex with Q, it has a global solution Q�, where its
j th column is [47]

Q�(:, j ) =
⎧
⎪⎪⎨

⎪⎪⎩

||Wt (:, j )||2 − λ

μt

||Wt (:, j )||2 Wt (:, j ), if λ
μt < ||Wt (:, j )||2

0, otherwise

.

(20)

It is well known that �2,1-norm is a sparsity-inducing norm
defined as the �1-norm of the columns of Q.

The update of the dual variable � is

�t+1 = �t + μt (X− Pt+1 −Qt+1) (21)

where μt+1 is updated by min(μt
max, ρμt ) and ρ > 1. It is

worth mentioning that a choice of stepsize to be increasing
(but upper bounded) is effective in improving the conver-
gence of ADMM for nonconvex optimization [48]. The
steps of LRMA-ADMM are summarized in Algorithm 1.

We now analyze the convergence of LRMA-ADMM.
From Definition 1, we observe that the nonconvex reg-

ularizer is continuous, concave, smooth, differentiable, and
monotonically increasing on [0,+∞), and its gradient is
nonnegative and monotonically decreasing.

3606 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 6 DECEMBER 2019



Algorithm 1: LRMA-ADMM.
Input: X, M, N

Initialize: λ, r̂0, μ0, ρ

for t = 0, 1, . . . do
repeat

Update Pt+1 according to (17);
Update Qt+1 according to (20);
Update �t+1 according to (21);
μt+1 = min(μt

max, ρμt );
until termination condition satisfied.

end for
Output: P̂

THEOREM 1 Suppose
∑t

i=1
μi+μi−1

2(μi−1)2 <∞ and arbitrary

starting point {P0, �0}, the sequence {Pt , Qt , �t } gener-
ated by LRMA-ADMM via (17), (20), and (21) is bounded
and converges to a stationary point of the problem (11) if
limt→∞(Pt − Pt+1) = 0.

PROOF See Appendix. �

B. LRMA-IRLS

In this section, we consider a special case of weakly
convex function, i.e., Schatten p-quasi norm of a matrix.
Using the Schatten p-quasi norm ||P||pSp

=∑i σ
p

i (P) with
0 < p < 1, i.e., the lp-norm of the singular values, instead
of the nuclear norm could further improve the performance.
When p = 1, the Schatten p-norm ||P||pSp

is the trace norm

or nuclear norm. When p→ 0, the Schatten p-norm ||P||pSp

will approximate the rank of P.

REMARK 2 It needs to be emphasized that the widely used
p-quasi norm (0 ≤ p < 1) in the literature for sparse re-
covery does not belong to the class of sparsity-inducing
penalties considered in this paper [35]. This is due to the
fact that the function |x|p, p ∈ [0, 1) goes against Defi-
nition 1 4) and Lemma 1. However, with approximation
to |x|p to avoid infinite derivative around zero point, i.e.,
F (x) = |x|(|x| + ε)p−1, p ∈ [0, 1), ε > 0, F (x) satisfies
Definition 1. Similarly, extending the p-quasi norm of a
vector to the Schatten p-quasi norm of a matrix, Schat-
ten p-quasi norm still goes against the Definition 1 4) but
satisfies 1)–3), which has been proved in [49].

We exploit the fact

||P||pSp
=

2M+1∑

i=1

(
σi(PT P)

) p

2 ≤
2M+1∑

i=1

(
σi(PT P)+ ε2

) p

2

=
2M+1∑

i=1

(
σi(PT P+ ε2I)

) p

2

=
∣∣∣∣

∣∣∣∣

[
P
εI

]∣∣∣∣

∣∣∣∣
p

Sp

� J (P). (22)

For p ≥ 1, J (P) is convex with respect to P for a given
ε, which can be easily proved by using the convexity of
Schatten p-quasi norm when p ≥ 1. Note that in sparse
recovery [50], [51] and matrix completion [36], [52], (22) is
popular to use for approximating the nonsmooth functions,
e.g., the p-quasi norm when 0 < p ≤ 1.

REMARK 3 Since J (P) in (22) is concave on [0,+∞) and
smooth, the inequality in Lemma 1 holds when ρ = 0,
which is the result of

(ε2 + |x|2)
p

2 − (ε2 + |y|2)
p

2 − py(x − y)

(ε2 + |x|)1−p/2
≥ 0

extending to matrices.

LEMMA 3 (SEE TH. 4.4 IN [18]) Let F (·) be a function
satisfying Definition 1 1)–3). For any P1, P2 ∈ R

(2M+1)×N

K∑

i=1

F (σi(P1 − P2)) ≥
K∑

i=1

(F (σi(P1))− F (σi(P2))) (23)

holds for all K = 1, . . . , 2M + 1. Lemma 3 shows the sub-
additivity of singular values, and this is a generalization of
the result F (p1 + p2) ≤ F (p1)+ F (p2) for p1, p2 ≥ 0 in
[35]. Based on Lemma 2, J (P) defined in (22) satisfies the
weakly convex function of Definition 1 4) [35].

Next, based on the smoothed version of Schatten p-
quasi norm in (22), the iteratively reweighted least squares
(IRLS) method is employed as a fast solver to deal with the
robust formulation (9). The main challenge for solving (9)
is that the residual error term is nonsmooth. By introducing
a regularization term, (9) is relaxed as

min
P

J (P)+ λ

∣∣∣∣

∣∣∣∣

[
X− P
ε1T

]∣∣∣∣

∣∣∣∣
2,1

(24)

where 1 ∈ R
M is the vector of all ones. The term ε1T makes

the objective function smooth.
Equivalently, (24) is rewritten as

min
P

trace((PH P+ ε2I)
p

2 )+ λ

2M+1∑

i=1

(||X− P||22 + ε2)
1
2 .

(25)
Since the objective function J (P, ε) � trace((PH P+
ε2I)

p

2 )+ λ
2M+1∑
i=1

(||X− P||22 + ε2)
1
2 in (25) is smooth, we

take its derivative

∂J (P, ε)

∂P
= pP(PH P+ ε2I)

p−2
2 + λ(X− P)D (26)

Dii = (||(X− P)i ||22 + ε2)
1
2 (27)

where D is a diagonal matrix with ith diagonal entry being
Dii . Therefore, setting (26) to zero results in

pP(PH P+ ε2I)
p−2

2 + λ(X− P)D = 0. (28)

As a consequence, we have

B � (PH P+ ε2I)
p−2

2 (29)
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Algorithm 2: LRMA-IRLS.
Input: X, M, N

Initialize: λ, ε, ρ, p

for t = 0, 1, . . . do
repeat

Compute the derivative of J (P, ε) in (25);
1) Bt+1← (PH P+ ε2I)

p−2
2 ;

2) Pt+1← (1/λ)I− B(λD+ B)−1X;
where Dii = (||(X− P)i ||22 + ε2)

1
2 ;

until termination condition satisfied.
end for

Output: P̂

P = (λI+ BD−1)−1λX

= (1/λ)I− B(λD+ B)−1X (30)

where −1 denotes the inverse operator. However, it should
be pointed out that (30) is not the solution to the problem
(24) for fixed B and D. In fact, (30) denotes the relationship
under which the critical point exists. Therefore, it is natural
to estimate D, B, and P iteratively according to (27), (29),
and (30). An iterative procedure is adopted, which is shown
in Algorithm 2.

REMARK 4 For any given ε > 0, any limit point of the se-
quence {Pt } generated by LRMA-IRLS is a stationary point
of problem (24). The proof of IRLS has been completed in
low-rank representation [36], [37], [52] with the constraint
function X = XZ+ E. The proof of LRMA-IRLS is simi-
lar to [37, Th. 2] by setting XZ = P and E = Q, and thus
omitted here.

C. DOA Estimation

Once the estimated noise-free data matrix P̂ is obtained,
the DOAs can be estimated using the subspace-type DOA
estimation methods, such as MUSIC. According to the prin-
ciple of MUSIC, the spatial spectrum is

PMUSIC � 1

aH (θ)(I− UsUH
s )a(θ)

(31)

where P̂ = Us�sVH
s , the columns of Us and Vs contain the

left and right orthonormal base vectors of P̂, respectively,
and �s is a diagonal matrix whose diagonal elements are
the singular values arranged in descending order. Under the
assumption that the number of sources is known a priori,
the DOAs are determined by searching for the maxima of
spatial spectrum.

REMARK 5 Using the subspace-type DOA estimation meth-
ods to obtain DOAs, the number of sources must be known
for separating the noise and signal subspaces. When the
source number is unknown, it can be determined using
conventional methods such as Akaike information criterion
[53] and minimum description length [54], but they are ef-
fective only when the noise is spatially white. Nevertheless,

a mismatch in the source number information will lead to
performance degradation of DOA estimation [55].

Now, we estimate DOAs even when there is no a priori
information of the source number. Since it is assumed that
the source signals are uncorrelated, Rs is diagonal. When P̂
is obtained, the (m, n) entry of the signal covariance matrix
R can be expressed as [56]

R(m, n) =
K∑

k=1

dm,ke
j2πτnk, m, n = −M, . . . , 0, . . . , M

(32)

where dm,k = σ 2
k ej2πτmk . Based on the mth row of R, we

form the Toeplitz matrix as follows:

Rm =

⎡

⎢⎢⎢⎣

R(m, 0) R(m, 1) · · · R(m, M)
R(m,−1) R(m, 0) · · · R(m, M − 1)

...
...

. . .
...

R(m,−M) R(m,−M + 1) · · · R(m, 0)

⎤

⎥⎥⎥⎦

= Ā(θ){Rs}mĀH (θ )

=
K∑

k=1

dm,k ā(θk)āH (θk) (33)

where Ā(θ) denotes a steering matrix with the kth steer-
ing vector being ā(θ ) = [1, e−j2πτk, . . . , e−j2πMτk]T , and
{Rs}m = diag{dm,1, . . . , dm,K}. It means that Rm have the
joint diagonalization structure and span the same range
space of Ā(θ ), i.e.,

range(Rm) = range(Ā(θ )). (34)

Therefore, we can utilize these (M + 1) matrices Rm to
identify the range space of the array manifold matrix Ā(θ )
and estimate the DOAs. For the kth source, there always
exists a vector bk that is orthogonal to the range space
spanned by the steering vectors except for ā(θk), i.e.,

bk ⊥ range{ā(θ1), . . . , ā(θk−1), ā(θk+1), . . . , ā(θK )}. (35)

Equivalently, we have

āH (θi)bk =
{

āH (θk)bk, i = k

0, i = k
. (36)

Substituting (36) into (33) yields

Rmbk =
K∑

k=1

dm,k ā(θk)āH (θk)bk = gmā(θk) (37)

where the geometric interpretation of (37) is that when
θ is one of the true DOAs, there exists a scalar gm =
dm,k āH (θk)bk making Rmbk and ā(θk) parallel, i.e.,

Rmb = gmā(θ), −M ≤ m ≤ 0 (38)

which leads to the following optimization problem:

min
θ

0∑

m=−M

||Rmb− gmā(θ)||2, s.t. ||g|| = 1 (39)
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where the constraint ||g|| = 1 is to avoid the trivial solution
of (39), i.e., {b = 0, g = 0}. However, (39) is difficult to
solve since only θ is of interest while b and g are unknown
nuisance parameters. To cope with this issue, we attempt to
simplify (39) via expanding the objective function

min
θ

bH

(
0∑

m=−M

RH
m Rm

)
b− bH

(
0∑

m=−M

gmRH
m ā(θ)

)

−
(

0∑

m=−M

g∗māH (θ)Rm

)
b+ āH (θ)ā(θ)

0∑

m=−M

|gm|2

s.t. ||g|| = 1. (40)

where āH (θ)ā(θ) = M + 1 and
∑0

m=−M |gm|2 = ||g||2 =
1. Denoting F �

∑0
m=−M RH

m Rm and G(θ) � [RH
−M ā(θ),

. . . , RH
0 ā(θ)], (40) is rewritten as

min
θ

J (θ, b, g) � bH Fb−bH G(θ)g−gH GH (θ)b+M+1

s.t. ||g|| = 1. (41)

Fixing θ and g, we set the partial derivative of J (θ, b, g)
with respect to b∗ to zero to obtain

∂J (θ, b, g)

∂b∗
= Fb−G(θ)g = 0 (42)

and the solution is

b∗ = F†G(θ)g (43)

where † denotes the Moore–Penrose pseudoinverse. Sub-
stituting (43) into (41), the optimization problem is trans-
formed into

min
θ

M + 1− gH GH (θ)F†G(θ)g, s.t. ||g|| = 1. (44)

which is also equal to

max
θ

gH GH (θ)F†G(θ)g, s.t. ||g|| = 1. (45)

Thus

max
θ

gH GH (θ)F†G(θ)g = max
θ

gH

M+1∑

i=1

λiuiuH
i g

= max
θ

M+1∑

i=1

λi |gH ui |2

= λmax{GH (θ)F†G(θ)} (46)

where λi are the eigenvalues of GH (θ)F†G(θ) with corre-
sponding eigenvectors ui . Therefore, for (44), DOAs are
estimated by finding the maxima of power spectrum P (θ)

P (θ) � 1

M + 1− λmax{GH (θ)F†G(θ)} (47)

where the source number information is not needed. The
procedure is described in Algorithm 3.

IV. SIMULATION RESULTS

In this section, the performance of the proposed methods
is compared with MM-MUSIC [19], �p-MUSIC [21], and

Algorithm 3.

Input: P̂, M, N

1) Calculate the noise-free data covariance matrix R:
R = 1

N
E{P̂P̂H };

2) Choose the first M + 1 rows of R and each row is
utilized to form the Toeplitz matrix as (33);
3) Construct F and G(θ):
F =∑0

m=−M RH
m Rm,

G(θ) = [RH
−Ma(θ), ..., RH

0 a(θ)];
4) Find the maxima of power spectrum P (θ):
P (θ) � 1

M+1−λmax{GH (θ)F†G(θ)} .
Output: DOAs are obtained from the peaks of P (θ).

average conditional Cramer-Rao bound [9], [57], [58] for
DOA estimation. The impulsive noise is taken to model
the additive noise. Three types of impulsive noise, namely,
SαS, GMM, and CGM distributions, are adopted in q(t).

A. SαS

The SαS distribution with zero-location, whose charac-
teristic function is expressed as

ϕ(ω) = exp (−γ α|ω|α) (48)

where 0 < α ≤ 2 is called the characteristic exponent that
describes the tail of the distribution, and γ > 0 is the scale.
When α = 2, the α-stable distribution reduces to the Gaus-
sian distribution and γ 2 is similar to the variance of the
Gaussian distribution. When α = 1, the α-stable distribu-
tion becomes the Cauchy distribution. When α < 2, α-
stable noise shows heavy tails and hence is impulsive. The
smaller the value of α, the more impulsive the noise is.
Since the second-order and higher-order moments of the
α-stable distribution are infinite for α < 2, the commonly
used signal-to-noise (SNR) is meaningless in this case. In-
stead, we employ the generalized SNR (GSNR) [21], [58],
[59]: GSNR = E{|s(n)|2}/γ α . In our simulations, α = 1.8
and γ = 0.1.

B. GMM

The PDF of the two-term Gaussian mixture noise is

pn(n) =
2∑

i=1

ci

πσ 2
i

exp

(
−|n|

2

σ 2
i

)
(49)

where 0 ≤ ci ≤ 1 and σ 2
i are the probability and variance

of ith term, respectively, with c1 + c2 = 1. If σ 2
2 � σ 2

1 and
c2 < c1 are selected, large noise samples of variance σ 2

2 oc-
curring with a smaller probability c2 can be viewed as out-
liers embedded in Gaussian background noise of variance
σ 2

1 . Therefore, GMM can well model the phenomenon in
the presence of both Gaussian noise and outliers. In our sim-
ulations, σ 2

2 = 100σ 2
1 , c2 = 0.1, and SNR = 30 dB. Hence,

there are around 10% noise samples that are considered as
outliers.
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C. CGM

It is modeled by a product for two random variables:
z = √xy, whose envelope characteristic function is given
by

�(ω) =
(

1+ ω2

β2

)−α

. (50)

This corresponds to the K-distributed envelope whose PDF
is [10]

fR(z) = 2β

�(α)

(
βz

2

)α

Kα−1(βz)u(z) (51)

where α is the shape parameter, β denotes the rate param-
eter, and u(z) is the unit step function. The PDF of x is a
Gamma distribution with a shape parameter α and a scale
parameter β, and y is a Gaussian random variable with
zero mean and variance σ 2

y . z has K-distribution envelope.
The variances of Gaussian noise and K-distributed noise
are, respectively, denoted as σ 2

1 and σ 2
2 , where σ 2

2 = κσ 2
1

with κ being a constant. In our simulations, κ = 4 and
α = β = 0.1.

To evaluate the robustness of the proposed methods,
unless stated otherwise, all simulations are carried out with
the settings: the numbers of sensors in ULA and snapshots
are (2M + 1) = 9 and N = 300, respectively. The signal
waveforms are independent quadrature phase-shift keying
signals with equal power, where the DOAs of two incoming
signals are θ1 = 20.2◦ and θ2 = 30.8◦. μ is initiated as
μ0 = 0.5/||sgn(X)||2. In each experiment, 500 Monte Carlo
trials are performed. The function F (·) forming the low-
rank inducing penalty in LRMA-ADMM is chosen as

F (t) = (|t | − ρ|t |2)X0≤|t |≤ 1
2ρ
+
(

1

4ρ

)
X|t |> 1

2ρ
(52)

where XP denotes the indicator function and ρ is set as 2
so that ᾱ = 1 [35]. Hence, we calculate that when λ < 1

2ρ
,

the proximal operator of (52) is

proxF (v, λ) = v − λsign(v)

1− 2τρ
Xλ≤|v|≤ 1

2ρ
+ viX|v|> 1

2ρ
. (53)

The intuition behind the choice of the MCP in (52) is
twofold. First, MCP provides the convexity of the penalized
loss in sparse regions to the greatest extent given certain
thresholds for variable selection and unbiasedness, com-
pared with other weakly convex penalties. Second, since
the proximal operator of MCP in (53) has closed-form so-
lution, it is easy to deal with the nonconvex minimization
problem.

For LRMA-IRLS, p is set to a value (p = 0.1) smaller
than 1, then the resultant problem will better approximate
the original problem. All our methods require the selec-
tion of the regularization parameter λ, which balances the
fidelity and sparsity of the solution. Although there are
many ways for its determination based on the statistical
information of the noise, such as cross-validation [60], we
simply set λ = 0.2 for IRMA-ADMM, which aligns with
the choice of λ ≤ (2M + 1)−1/2 suggested in [61], and we

Fig. 2. RMSE versus λ.

Fig. 3. RMSE versus GSNR in SαS noise.

observe that IRMA-IRLS with λ = 0.55 works well in
Fig. 2. The effect of the tuning parameter λ on the perfor-
mance of the proposed methods has been studied at SNR
= 0 dB. All simulations are performed using MATLAB
R2015b on a personal computer with 3.40 GHz Intel core
i7 CPU and 4 GB RAM, under a 64-bit Microsoft Windows
7 operating system.

In the first experiment, we test the statistical perfor-
mance of the proposed methods in DOA estimation. All
three types of impulsive noise are considered. For SαS
noise, the root mean squared error (RMSE) versus SNR is
plotted in Fig. 3. It is observed that the LRMA-ADMM
achieves the best DOA estimation performance in SαS
noise, especially when GSNR > 5 dB. Figs. 4 and 5 show
the RMSE of the DOA estimators in GMM and CGM noises
versus SNR, respectively. We see that the proposed meth-
ods and �p-MUSIC outperform MM-MUSIC, while our
solutions enjoy comparable performance with �p-MUSIC
in GMM noise.

In the second experiment, the resolution probability of
resolving two closely-spaced sources is examined. The res-
olution probability is computed as the ratio between the

3610 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 6 DECEMBER 2019



Fig. 4. RMSE versus SNR in GMM noise.

Fig. 5. RMSE versus SNR in CGM noise.

Fig. 6. Resolution probability versus SNR in GMM noise.

number of successful runs and total number of the indepen-
dent runs. A trial is regarded as success when the maximum
value of the absolute deviation between the estimated and
true DOAs is less than the half deviation, i.e., max{θk −
θ̂k} ≤ |θ2 − θ1|/2, k = 1, 2 where θ1 = 20.2◦ and θ2 =
30.8◦. The results are shown in Figs. 6–8. The resolution

Fig. 7. Resolution probability versus GSNR in SαS noise.

Fig. 8. Resolution probability versus SNR in CGM noise.

performance of the proposed schemes is superior to the
MM-MUSIC. LRMA-ADMM outperforms other methods
in the presence of non-Gaussian noise, except �p-MUSIC
in the case of SαS and CGM noises.

The third experiment tests the resolution probability
of DOA estimators in terms of the angle separation be-
tween two targets, where SNR/GSNR = 10 dB. The two
uncorrelated targets are considered with DOAs θ1 = 0◦

and θ2 = 0◦ +�θ , where �θ varies from 2◦ to 20◦. As
indicated in Figs. 9–11, the proposed methods tend to
become unbiased when the angular separation is more than
10◦ apart. From Figs. 10 and 11, in the case of SαS and
CGM noises, the proposed methods have higher resolution
probability in terms of the angle separation compared with
�p-MUSIC.

The last experiment compares computational time, and
the results are tabulated in Table I. The average CPU run-
time is used as the performance metric, although the runtime
gives only a rough estimation of complexity. It is demon-
strated that both solutions are much faster than the other
investigated methods. LRMA-ADMM achieves the best
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Fig. 9. Resolution probability versus angle separation in GMM noise.

Fig. 10. Resolution probability versus angle separation in SαS noise.

Fig. 11. Resolution probability versus angle separation in CGM noise.

runtime performance among all methods, which is efficient
since the ADMM updates each variable separately only
once in each iteration.

TABLE I
Runtime Comparison

V. CONCLUSION

In this paper, we have proposed two iterative methods
via combination of LRMA technique and a class of weakly
convex inducing penalties to tackle the problem of DOA
estimation in impulsive noise. Although �p-MUSIC out-
performs the proposed methods, especially in GMM noise,
our methods can achieve a comparable DOA estimation per-
formance with faster computation and without requiring a
priori information of the source number. Simulation results
evaluate the direction finding performance of the proposed
methods, indicating a good balance between accuracy and
complexity.

APPENDIX

From (21) and the definition of L, we have

L(Pt , Qt , �t , μt )

= L(Pt , Qt , �t−1, μt−1)+ < �t − �t−1, X− Pt −Qt

>+ μt − μt−1

2
||X− Pt −Qt ||2F

= L(Pt , Qt , �t−1, μt−1)+ μt + μt−1

2(μt−1)2
||�t − �t−1||2F .

(54)

Moreover, it follows that Qt+1 is a global solution to (19)
and L(Pt , Qt , �t ) is monotonically decreasing

L(Pt+1, Qt+1, �t , μt )

≤ L(Pt+1, Qt , �t , μt ) ≤ L(Pt , Qt , �t , μt )

= L(Pt , Qt , �t−1, μt−1)+ μt + μt−1

2(μt−1)2
||�t − �t−1||2F .

(55)

Applying the chain rule for t times, then

L(Pt+1, Qt+1, �t , μt )

≤ L(P1, Q1, �0, μ0)+
t∑

i=1

μi + μi−1

2(μi−1)2
||�i − �i−1||2F .

(56)

With t →∞, if
∑t

i=1
μi+μi−1

2(μi−1)2 <∞, the left-hand side
(LHS) of (56) is bounded. Indeed, �t is bounded. Recall

∂Q||Q||2,1 =

⎧
⎪⎨

⎪⎩

0, if ||Qt (:, j )||2 = 0

Wt (:, j )

||Wt (:, j )||2 , otherwise
. (57)
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It is easily proved that ∂Q||Q||2,1 is bounded. The optimal
Qt+1 needs to satisfy the first-order optimality condition,
i.e.,

0 ∈ ∂QL(Pt+1, Q, �t , μt )

= ∂Q||Q||2,1 − �t − μt (X− Pt+1 −Qt+1)

= ∂Q||Q||2,1 − �t+1 (58)

Thus, �t is bounded. Adding 1
2μt ||�t ||2F to the augmented

Lagrangian gives

L(Pt+1, Qt+1, �t , μt )+ 1

2μt
||�t ||2F =

J (Pt+1)+ λ||Qt+1||2,1 + μt

2
||X− Pt+1 −Qt+1 + �t

μt
||2F .

(59)

Since {�t } is bounded, the LHS is bounded. Thus, each term
on the RHS is bounded; then, {Pt } and {Qt } are bounded.

By Bolzano–Weierstrass theorem, let {P∗, Q∗} be any
accumulation point of problem (11). Thus, due to the as-
sumption of limt→∞(Pt − Pt+1) = 0 and

∑t
i=1

μi+μi−1

2(μi−1)2 <

∞, accordingly, there exists �∗ such that the following
optimality conditions are satisfied:

∂Q||Q||2,1 = �∗, −�∗ ∈ ∂(−F (σi(P)), X = P∗ +Q∗.
(60)

We conclude that {P∗, Q∗, �∗} satisfies the Karush–Kuhn–
Tucker conditions of L(Pt , Qt , �t ). Thus, {P∗, Q∗} is a sta-
tionary point of problem (11) [62].
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