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Abstract. Direction-of-arrival (DOA) estimation based
on sparse signal reconstruction (SSR) is always vulnerable
to off-grid error. To address this issue, an efficient super-
resolution DOA estimation algorithm is proposed in this
work. Utilizing the Taylor series expansion, the sparse dictio-
nary matrix is constructed under the off-grid model. Then, a
polynomial optimization function is established based on the
orthogonality principle. By minimizing the given objective
function, we derive an efficient closed-form solution of the
off-grid errors. Using the estimated off-grid errors, the dis-
cretized grid can be iteratively learned and approaches the
true DOAs. With the newly learned grid, accurate DOA esti-
mations can be achieved through the SSR scheme. The pro-
posed algorithm converges fast and achieves precise DOA es-
timations even the step size of the discretized grid is large. The
superior performance of the proposed algorithm is demon-
strated by the simulation results.

Keywords
Direction of arrival (DOA) estimation, grid learning,
sparse signal reconstruction (SSR), off-grid model

1. Introduction
Direction-of-arrival (DOA) estimation is one of the

most significant array signal processing techniques which
has wide range of applications, such as navigation, wireless
communication, radar and sonar [1]. In the past few decades,
conventional DOA estimators have been proposed including
Capon [2], MUSIC [3] and ESPRIT [4]. These subspace
based estimators often rely on the statistical properties of the
sampled data, thus a large number of snapshots are required
for precision estimation. With the development of sparse
signal reconstruction (SSR) [5], [6], several SSR-based DOA
estimation methods exploit the spatial sparse property of di-

rection information to further improve the estimation perfor-
mance [7–12], and these methods show strong robustness at
the cases of limited snapshots.

However, SSR-based DOA estimation algorithms al-
ways require a pre-specified discretized spatial grid and sup-
pose the true DOAs lie on the discretized grid points. In
practice, this assumption cannot always be guaranteed and it
will lead to discretization error, which is referred as off-grid
error or basis mismatch. Furthermore, SSR-based DOA es-
timation algorithms will suffer from degraded performance
significantly due to the off-grid error. Therefore, dense dis-
cretized grid or grid refinement operation [13] is necessary
to suppress the off-grid error [14] where the computational
complexity is demanding. Moreover, it still cannot guaran-
tee that the true DOAs lie on the grid and will lead to a
highly coherent dictionary matrix which violates conditions
for sparse signal reconstruction according to the restricted
isometry property (RIP) [15].

The effect of off-grid problem for the SSR-based algo-
rithm has been studied in [14], which verifies that the grid
mismatch will significantly affect the high-resolution spec-
trum analysis. Thus, various DOA estimators have been
proposed to account for the off-grid error [16–18]. In [16],
the sparse total least squares (S-TLS) algorithm is proposed
which has been approved to be optimal in themaximuma pos-
teriori (MAP) sense. However, the S-TLS algorithm achieves
optimal solution under the assumption that the perturbation
caused by the dictionarymismatch followsGaussian distribu-
tion. It has been shown in [17] that the Gaussian distribution
cannot be fully satisfied within the off-grid problem. To deal
with this issue, an off-grid model based on the Taylor se-
ries expansion is established and the corresponding off-grid
sparse Bayesian inference (OGSBI) algorithm is designed
under the assumption of off-grid error following uniformly
distribution in a bounded interval [17]. The OGSBI algo-
rithm achieves superior performance and converges faster
than the S-TLS algorithm. A non-convex optimization based
DOA estimation algorithm is presented in [18] which esti-
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mates DOAs with a two-step iterative method. However, as
these algorithms aforementioned [17], [18] always rely on
the accuracy of the steering vector approximation, their es-
timation performance degrade in the case of coarse grids.
Hence a root sparse Bayesian learning (RSBL) method is
developed in [19] by refining the grids from the root of cer-
tain polynomial, and a super-resolution iterative reweighted
algorithm is proposed using convex relaxation with the log-
sum sparsity-encouraging function [20]. Nevertheless, the
iterative reweighted algorithm is limited by the heavy com-
putational complexity due to the alternating optimization.

On the other hand, the atomic norm and covariance
matching criteria have been applied into gridless DOA es-
timation [21], [22]. Utilizing the atomic norm and covari-
ance matching criteria, the off-grid DOA estimation problem
can be transferred into a semi-definite programming (SDP)
problem via reconstructing Toeplitz matrices of direction in-
formation. Unluckily, the SDP problem suffers from heavy
computational load [23].

In this paper, an efficient super-resolution DOA estima-
tor based on the grid learning scheme is proposed. We first
construct the sparse dictionary matrix based on the off-grid
model with the Taylor series expansion. As for the orthogo-
nal characteristic between the steering vectors and the noise
subspace, a polynomial optimization objective function is
proposed, and then the resulting closed-form solution with
respect to the off-grid error is derived. With the estimation of
the off-grid error, the discretized grids are continually learned
and revised along the true DOAs. After several iterations, a
non-uniform discretized grid dictionary is established. It
should be mentioned that the number of discretized grid does
not change throughout the iterative process. Thus, by using
the newly learned grids, the accuracy DOA estimations can
be obtained efficiently. The proposed algorithm converges
fast and achieves Cramér-Rao lower bound (CRLB) [24]
asymptotic performance even the step size is large. Sim-
ulation results verify the effectiveness and accuracy of the
proposed algorithm.

The main advantages of the proposed algorithm are cat-
egorized as follows: 1) we derive an available closed-form
solution for the off-gridDOA estimation problemwith the ad-
vantage of low computational complexity. 2) The proposed
algorithm can converge fast even when the grid step size of
the sparse dictionary is large. 3) The grid is fixed and learned
iteratively with the estimation of the grid errors.

The outline of this paper is organized as follows.
In Sec. 2, the signal model is built. Section 3 contains
two parts, we review the off grid problem exploiting the
Taylor series expansion in the first part, then in the second
part, a super-resolution DOA estimation algorithm is elabo-
rated. Section 4 presents the results of numerical simulations.
The conclusion is provided in Sec. 5.

Notations: Lower-case and upper-case bold charac-
ters are used to denote vectors and matrices, respectively.
IN denotes the N×N identity matrix. (·)T and (·)H denote the

transpose and Hermitian operator, respectively. E[·] stands
for an expectation operator. diag{x} denotes a diagonal ma-
trix with the elements of x constituting the diagonal entries.
<{·} stands for the real part of complex variable. In addition,
‖·‖2 denote the `2-norm. CM×N (CM ) stands for an M × N
(M × 1) complex matrix (vector) set.

2. Signal Model
Consider K uncorrelated far-field narrow-band signals

from directions θ = [θ1, . . . , θK ]
T impinging on a linear array

consisted of M antennas, where θk is random sampled from
the continuous angle domain (− π2 ,

π
2 ). The complex-valued

baseband received signal at time index t can be expressed as

x(t) =
K∑
k=1

a (θk) sk(t) + n(t) = A(θ)s(t) + n(t) (1)

where A(θ) = [a(θ1), · · · ,a(θK )] ∈ CM×K is the array mani-
fold matrix and a(θk) is the steering vector corresponding to
the kth signal. s(t) = [s1(t), · · · , sK (t)]T ∈ CK is the signal
waveform vector and n(t) = [n1(t), · · · ,nM (t)]T ∈ CM is the
white additive complex Gaussian noise term with zero-mean
and variance matrix σ2

nIM . In addition, we assume that s(t)
is statistically independent of the noise term n(t). With T
collected samples, the received signal matrix is written as

X = [x(1), · · · ,x(T)] = A(θ)S + N (2)

where S = [s(1), · · · , s(T)] and N = [n(1), · · · ,n(T)]. The
sampling covariance matrix of X is calculated as R̂ =

(1/T)XXH. The eigendecomposition of R̂ can be expressed
as

R̂ = ÊsΣ̂sÊ
H
s + ÊnΣ̂nÊ

H
n (3)

where Ês is the signal subspace corresponding to the K
largest eigenvalues contained in Σ̂s = diag{[σ2

1 , · · · , σ
2
K ]}.

In addition, Ês expands the same subspace with the array
manifold matrix A(θ). Similarly, Ên is the noise subspace
corresponding to the M − K smallest eigenvalues contained
in Σ̂n = diag{[σ2

K+1, · · · , σ
2
M ]}.

3. Super-Resolution DOA Estimation
Algorithm
In this section, the off-grid problem is first reviewed.

Then, the proposed super-resolution DOA estimation algo-
rithm is developed.

3.1 Off-Grid Problem
Denote Θ = [φ1, · · · , φL] as an L-element uni-

formly discretized spatial grid with step size τ in the
range of [−π/2, π/2]. Thus, an overcomplete dictionary
Ā(Θ) = [a(φ1), · · · ,a(φL)] is constructed readily. In the off-
grid scenario, the true DOAs do not lie on the grid points,
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i.e., θk < Θ with k = 1, · · · ,K . Let βk denote the off-grid
error defined as βk = θk − φlk , lk ∈ {1, . . . , L}, and φlk is
the nearest grid point to the true DOA θk . Utilizing the first-
order Taylor series expansion, the approximation of the true
steering vector a(θk) can be expressed as

a(θk) ≈ a(φlk ) + b(φlk )βk (4)

where b(φlk ) = ∂a(φlk )/∂φlk . Motivated by this fact, a new
overcomplete dictionary matrix can be further constructed by
applying the first-order Taylor series expansion

Φ = Ā(Θ) + B̄(Θ)diag{β̄} (5)

where B̄(Θ) = [b(φ1), · · · ,b(φL)]. β̄ is a sparse vector of the
off-grid error. It should be noted that the expected locations
of the nonzero elements of β̄ also correspond to the DOAs.

The singular value decomposition (SVD) of X is ex-
pressed as X = UΛVH, where U and V are left and right
singular vectors, respectively. Denote Vs ∈ C

T×K as right
singular vectors corresponding to the K largest singular val-
ues. Multiplying the received signal matrix withVs , we have

Xv = XVs = A(θ)Sv + Nv (6)

where Sv = SVs and Nv = NVs . As explained in [13],
Xv expands the signal subspace and both the computational
complexity and the sensitivity to noise inXv are reduced. By
ignoring the approximation error, the sparse form of Xv is
expressed as

Xv = ΦS̄ + Nv (7)

where S̄ ∈ CL×K is a row-sparse matrix with K nonzero rows
and the expected locations of the nonzero rows correspond
to the true DOAs.

3.2 Proposed Algorithm
As it is known, the Taylor series expansion based signal

model in (4) only achieves accurate approximation when the
grid points are close to the true DOAs. Thus, with the in-
crease of the off-grid error βk , especially under the large step
size case, the approximation of the steering vector in (4) will
be contaminated heavily which will further lead to degrada-
tion of the DOA estimation performance. This is the reason
why the Taylor series expansion based off-grid DOA estima-
tion algorithms, such as the OGSBI algorithm [17], will have
degraded performance under the case of large step size. On
the contrary, dense discretized gridwill lead to a highly coher-
ent dictionary matrix and heavy computational complexity.

To overcome this challenging issue, the main idea of
the proposed grid learning scheme is to learn the discretized
grid utilizing the off-grid error estimates. Thus, a more ac-
curate steering vector approximation can be achieved and
the revised grid points will close to the true DOA values.
As a result, the performance of the sparse vector estima-
tion will be improved significantly. Since the total number

of the grid points remains constant, the computational com-
plexity of the grid learning scheme increases slightly. The
diagram of the proposed grid learning scheme is introduced
in Fig. 1. From Fig. 1, it should be noted that the grid point
φlk is approaching the true DOA iteratively by off-grid error
compensation.

Note thatXv expands the signal subspace, the true steer-
ing vector a(θk) is highly correlated with Xv . Mathemati-
cally, there exist K atoms in Ā(Θ) having the largest corre-
lation factors with Xv and the corresponding grid points are
the K grid points nearest to the true DOAs. The indexes set
of these grid points is given as

Ω =
{
lk :

aH (φlk )Xv

2
2 > ζ

}
(8)

with lk ∈ {1, · · · , L} and k = 1, · · · ,K . Since Ês also is
the signal subspace, it can be used to replace Xv in (8). In
addition, ζ is a threshold parameter used to select the K
sparse atoms.

With the indexes set Ω, the submatrice of Ā(Θ) and
B̄(Θ) can be respectively constructed as

ĀΩ =
[
a(φl1 ), · · · ,a(φlK )

]
,

B̄Ω =
[
b(φl1 ), · · · ,b(φlK )

] (9)

where lk ∈ Ω. Similarly, we also denote β̄Ω = [βl1, · · · , βlk ]T
as a subvector of β̄. Theoretically, β̄Ω contains K nonzero
elements of β̄. In this case, only K parameters are required to
be estimatedwhichwill reduce the computational complexity
of the proposed algorithm effectively.

By utilizing the property that the signal subspace and
the noise subspace are orthogonal to each other, we con-
struct the objective function f (βlk ) with the steering vector
approximation in (4)

f (βlk ) =
[
a(φlk ) + b(φlk )βlk

]HÊnÊ
H
n

[
a(φlk ) + b(φlk )βlk

]
.

(10)

Thus, the off-grid error βlk can be estimated by minimizing
the objective function f (βlk )

β̂lk = arg min
βlk

f (βlk ) (11)

with k = 1, · · · ,K .

Fig. 1. Diagram of the proposed grid learning scheme.
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After formula simplification, the objective function
f (βlk ) is rewritten as

f (βlk ) = c2,k β
2
lk
+ c1,k βlk + c0,k (12)

where the polynomial coefficients c2,k , c1,k and c0,k are re-
spectively expressed as

c2,k = bH(φlk )ÊnÊ
H
nb(φlk ) =

ÊH
nb(φlk )

2

2
,

c1,k = 2<
{
aH(φlk )ÊnÊ

H
nb(φlk )

}
,

c0,k = aH(φlk )ÊnÊ
H
na(φlk ) =

ÊH
na(φlk )

2

2
.

(13)

From (12), it is clear that f (βlk ) is a quadratic poly-
nomial function of βlk . Note that c2,k > 0, f (βlk ) achieves
its minimum value when βlk = −c1,k/2c2,k . Combining
the constraint of range of βlk , i.e., (φlk−1 − φlk )/2 6 βlk 6
(φlk+1 − φlk )/2. Thus we can derive a closed-form solution
of the objective function (12) easily and the estimation of βlk
can be given as below

β̂lk =



−
c1,k

2c2,k
,

φlk−1 − φlk
2

6 βk 6
φlk+1 − φlk

2
,

φlk−1 − φlk
2

, −
c1,k

2c2,k
<
φlk−1 − φlk

2
,

φlk+1 − φlk
2

, −
c1,k

2c2,k
>
φlk+1 − φlk

2
.

(14)

It is to be noted here that we do not need to calculate all
these three coefficients in (13), where c2,k and c1,k are only
needed to estimate the off-grid error βlk by exploiting the
closed-form solution (14).

Once K nonzero elements of β̄ are obtained by solv-
ing (11), the discretized grid Θ is revised as

Θ
′

= Θ + β̄. (15)

Since the optimal solution of (11) can be found in the given
interval, it guarantees that the proposed algorithm converges
within several iterations. With the newly learned grid Θ

′

,
accurate DOA estimation can be achieved as follows

min
s̄`2

s̄`2


1 s.t.
Xv − Ā(Θ

′

)S̄
2

F
< δ (16)

where s̄`2
l
=

√∑K
k=1 S̄2

l,k
and S̄l,k is the (l, k)th element of S̄. δ

is a user-specific tolerance factor. The SSR problem in (16)
can be effectively solved using various methods, such as
OMP [25], Lasso [26] and `1-SVD [13].

For clarity, The main steps of the proposed algorithm is
summarized as follow,

• Step 1, initialization: The initial discretized grid Θ(0),
β̄
(0)
= 0L , the number of targets K , r = 0 and the

maximum number of iteration Υ.

• Step 2, calculate Ên and Xv using (3) and (6), respec-
tively.

• Step 3, obtain the indexes setΩ(i) from (8) and calculate
β̂
(i)
lk

through (14).

• Step 4, revise the discretized grid asΘ(i+1) = Θ(i)+ β̄
(i).

• Step 5, repeat Steps 3 to 4 until maximum number of
iteration is achieved or | β̂(i+1)

lk
− β̂
(i)
lk
| < 10−8.

• Step 6, estimate the DOAs by solving (16).

4. Simulation Results
In this section, a 10-elements (M = 10) uniform lin-

ear array (ULA) with half-wavelength interelement spacing
is adopted. In addition, we assume three uncorrelated sig-
nal sources (K = 3) impinging on the ULA from directions
−13.8597◦, 4.3692◦ and 28.2096◦, respectively. An initial
discretized grid from −90◦ to 90◦ is applied. All simulations
in this section are performed by Matlab 2014a on a PC plat-
formwithMSWindows 10 operation system, 16GBmemory
and Intel Quad-Core i7 processor. In addition, the signal to
noise ratio (SNR) is defined as SNR = 10 log10

E[ ‖s(t) ‖2]
σ2

n
.

In the first simulation, we provide the iteration pro-
cess of grid learning. In Fig. 2, the initial discretized grid
points are uniformly distributed with the grid step size of 9◦,
and the blue squares and the red dot lines represent the grid
points and the positions of true targets, respectively. It is
obvious that the grid points around the true DOAs are fixed
and learned by iterations, and approach the more suitable
grid points after about 4 iterations. It should be noted that
the iterative process will not increase the number of grid
points in the sparse dictionary, thus it does not increase the
computational complexity of the SSR-based DOA estimation
algorithm. Then a normalized spatial spectra is achieved
using the OMP algorithm and the proposed super-resolution
DOA estimation algorithm. The step size of the initial dis-
cretized grid is set as τ = 9◦. The number of snapshots is
set as T = 500 and SNR= 5 dB. From Fig. 3, we can see
that the OMP algorithm achieves poor DOA estimation due
to the existence of the off-grid error. Instead, the proposed
algorithm overcomes the off-grid problem and accurate DOA
estimations are achieved due to the newly sparse dictionary
is exploited.
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Fig. 2. Grid learning course in the proposed algorithm.
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Fig. 3. The normalized spatial spectrum with the new learned
grid point.

To further examine the performance of the proposed
super-resolution DOA estimation algorithm, the root mean
square error (RMSE) is defined as

RMSE =

√√√
1

KP

P∑
p=1

K∑
k=1

(
θ̂k ,p − θk

)2
(17)

where P is the number of Monte Carlo trials used to calculate
the RMSE. θ̂k ,p is the DOA estimation of θ̂k in the pth trial.

Figure 4 illustrates the RMSE comparison versus SNR
of the OMP algorithm, the OGSBI algorithm [17], the RSBL
algorithm [19], the SURE_IR algorithm [20], the proposed
algorithm and the CRLB. In this simulation, the step size of
the initial discretized grid is set as 4◦ and the number of snap-
shots is T = 200. The RMSEs are calculated among 1000
Monte Carlo trials. From these results, we can see that
the proposed algorithm achieves the best DOA estimation
performance among all of the algorithms. In addition, the
proposed algorithm achieves CRLB asymptotic performance
when SNR > −8 dB. Due to the off-grid error, the OMP al-
gorithm achieves heavily degraded performance. Although
the SURE_IR and RSBL algorithm show better estimation
accuracy than OMP, the performance of these two algorithm
are still limited due to the large grid step size. The perfor-
mance of the OGSBI algorithm also degrades heavily when
SNR > 10 dB. The reason is that the large step size involves
large steering vector approximation.

In order to examine the performance of the proposed
DOA estimator with different initial search steps, the RMSE
comparison of OGSBI, RSBL and the proposed estimator is
illustrated in Fig. 5 after 1000 Monte Carlo trails, where the
step sizes of initial discretized grid are set as 2, 4, 6 and 8
respectively with different markers. As shown in Fig. 5, the
proposed DOA estimator shows robust performance through-
out all range of the SNRwith the increase of the step size. On
the contrary, OGSBI and RSBL fail to provide a satisfying
performance when the value of step size is large. Especially,
the OGSBI algorithm has a significant degraded performance
when τ = 8, due to the larger steering vector approximation.
The results demonstrate the robustness of the proposed DOA
estimator under different initial search step size τ.
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Fig. 4. RMSE versus SNR.
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Fig. 5. RMSE versus SNR with different step sizes of the initial
discretized grid. The red lines, blue dash lines and green
lines denote the results achieved from the proposed algo-
rithm, OGSBI algorithm and RSBL algorithm, respec-
tively.
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Fig. 6. RMSE versus the number of snapshots.

In the next simulation, RMSE versus the number of
snapshots is examined in Fig. 6 after 1000 Monte Carlo
trails. The SNR is set as 10 dB and the step size is set as
τ = 4◦. Similar with the results in Fig. 4, the proposed al-
gorithm still achieves the best estimation performance which
approaches the CRLB. Due to the existence of the off-grid
error, the OMP algorithm achieves a floor performance in
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this simulation. The RSBL and SURE_IR algorithms are not
sensitive to the number of snapshots. However, the OGSBI
algorithms obtain a floor performance when T ≥ 300. The
reason is that the accuracy of the steering vector approxi-
mation is the main factor which limits the estimation perfor-
mance in this scenario.

The convergence performance of the proposed algo-
rithm is demonstrated in Fig. 7. The number of snapshots is
T = 200 and SNR = 10 dB. From this result, it is clear that
the proposed algorithm convergeswithin three iterations even
the step size is τ = 8◦. The fast convergence makes the pro-
posed algorithm achieve robust and outstanding performance
even with large value of step size.

To further verify the computational complexity of pro-
posed DOA estimator, the CPU running time comparison of
the OMP, OGSBI, RSBL, SURE_IR and the proposed esti-
mator is plotted in Fig. 8 after 100 Monte Carlo trails. In
this simulation, the number of snapshots are set as 200 as
well as the step size is τ = 4◦. From Fig. 8, it is obviously
that the proposed estimator is much more efficient than the
other algorithms, except for OMP. In this simulation, we can
conclude that the grid learning process is efficient and does
not increase too much computational complexity compare
with OMP.

In order to intuitively analyze the advantages of the
proposed DOA estimator, a comparison table is provided.
In Tab. 1, the RMSEs are calculated with 1000 Monte Carlo
trails under the configuration of SNR = 10 dB and T = 200.
As shown in Tab. 1, the proposed estimator is more efficient
than OGSBI, RSBL and SURE_IR algorithms, especially

SURE_IR algorithm suffers from a heavy computational
load. In addition, the proposed estimator shows a robust and
outstanding performance even when the step size τ is large.

5. Conclusion
In this paper, an efficient super-resolution DOA estima-

tor based on the grid learning is proposed. By combining the
Taylor series expansion and the orthogonal property between
the signal and noise subspace, a polynomial optimization
function is established and the effective closed-form solution
is derived at the same time. The off-grid error is then ef-
ficiently estimated by the closed-form solution. Thus, the
discretized grid is iteratively revised to make sure the grid
points approach the true DOAs. At last, the DOAs are es-
timated accurately through the SSR scheme. The proposed
algorithm converges fast and achieves CRLB asymptotic per-
formance under the off-grid case even the grid step size is
large. Simulation results demonstrate the effectiveness of the
proposed super-resolution DOA estimator.
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