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Parameter Tuning-Free Missing-Feature
Reconstruction for Robust Sound Recognition

Qi Liu , Member, IEEE, and Jibin Wu , Member, IEEE

Abstract—With the advent of the deep neural network, auto-
matic speech recognition (ASR) has seen significant improvements
in recent years. However, ASR performance degrades rapidly when
the acoustic environment, such as communication channels or noise
backgrounds, differ from those of training data. In the missing
feature approach to speech processing, the unreliable feature com-
ponents are identified and reconstructed to overcome signal degra-
dation and the mismatch of the acoustic environment. To reduce the
model dependency, we investigate the matrix completion technique
in missing feature reconstruction tasks. However, most of the ma-
trix completion techniques require a priori tuning parameters,
e.g., target rank, which is hard to determine in practice. In this
work, we propose a matrix completion method based on matrix
factorization for the missing-feature reconstruction task, that does
not require model training nor parameter tuning. Experiments
show superior feature reconstruction performance and compu-
tational efficiency in both speech recognition and environmental
sound classification tasks.

Index Terms—Missing-feature reconstruction, matrix
factorization, deep neural networks (DNNs), automatic speech
recognition (ASR), environmental sound classification.

I. INTRODUCTION

THE RECENT progress on deep neural networks (DNN) has
improved audio signal processing by leaps and bounds, in-

cluding sound classification [1], speech recognition [2], speaker
verification [3], and speech synthesis [4].

The quality of audio features plays a pivotal role in DNN-
based audio processing systems. Many studies have been
devoted to acoustic feature representation which is the key
in signal acquisition and processing [5]–[13]. However, the
performance of DNNs degrades severely under mismatched
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conditions. Moreover, the noise and distortion in the commu-
nication channels also cause corruption to speech contents. The
robustness of acoustic features, therefore, remains an important
research topic in audio information processing tasks.

Recently, DNN-based speech enhancement and restora-
tion [14], [15] methods have been studied to tackle the mismatch
condition and signal degradation problems. These DNN-based
methods can effectively model the characteristic of both the orig-
inal audio signals and noise, such that they can restore the audio
signals with high-fidelity. However, to allow good coverage of
different acoustic environments and noise types, they require a
notoriously large amount of training data and a gigantic DNN
model. Moreover, the remarkable performance of DNNs also
comes at the cost of computational resources and storage space
during deployment, which prevents the large-scale deployment
to pervasive low-power mobile and internet-of-things (IoT)
devices.

In another vein of research, to reduce the complexity of
model training and the computational burden at runtime, the
model-free signal processing methods are resorted to restoring
the original audio content from degraded observations. Inspired
by the conceptual framework of image inpainting, whereby to
restore the missing pixels, the audio inpainting framework [16]
is formalized to address the audio degradation problems that
caused by impulsive noise, clicks to old recordings of scratched
CDs, clipping by insufficient dynamic range and packet loss in
cordless phones or voice over IP (VoIP) [16]–[19]. Within this
framework, the distorted samples are regarded as missing and
their location indices are assumed to be known. Owing to the
advances in compressed sensing (CS) [20], [21], numerous audio
inpainting methods based on the sparse representation have been
devised, including [16], [17], [19]. These early studies focus
on the situation where short-period, continuous audio segments
are missing. By leveraging the sparse regression techniques, the
missing segments can be recovered with high quality.

Different from these early studies on audio inpainting, a
general distribution of missing components in the feature space
is considered in this work. That is, the components of the
spectrogram feature are missing randomly. This phenomenon
comes naturally in a variety of scenarios, instances include non-
uniform/compressive sampling during signal acquisition [22],
and noise corruptions during the acoustic feature dictionary
transmission and storage [23]. Therefore, successfully detecting
and restoring the distorted feature representation under these
scenarios can significantly improve the robustness of subsequent
speech processing systems.
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The missing-feature approach [24] has been introduced earlier
to tackle this task by explicitly modeling the audio signals
and noise, such that the original audio signal can be effec-
tively restored from the degraded observations. As such, the
performance of the missing-feature approach highly depends on
the capability to accurately measure the noise characteristics,
therefore, limiting the effectiveness of this approach, especially
for challenging non-stationary noise. To remove the dependence
on audio signal and noise modeling as in the missing-feature
approach, we investigate the matrix completion techniques to
restore the missing feature components. Similar to ours, the work
in [23], applies the singular value thresholding (SVT) [25], [26]
to enhance the reliability of speech features for noise-robust
speaker identification.

The acoustic features typically exhibit spectro-temporal dy-
namics that can be represented as a matrix. Therefore, matrix
completion techniques can be employed to restore the miss-
ing components in acoustic features. However, most of the
existing matrix completion techniques require costly hyperpa-
rameter tuning that are difficult to determine in practice. For
example, SVT [25], [26] and truncated nuclear norm regu-
larization by the alternating direction method of multipliers
(TNNR-ADMM) [27] are two well-known matrix completion
methods that exhibit compelling recovery capabilities. Never-
theless, the SVT method may obtain sub-optimal performance
in practical applications especially for real-world datasets with
indeterminate rank information, which is due to the fact that
the SVT method is sensitive to its hyperparameters. Addition-
ally, the nuclear norm treats the singular values differently by
adding them together, which may not be a good approximation
to the rank function wherein all the nonzero singular values
have equal contributions. As for the TNNR-ADMM method, its
performance is vulnerable to the pre-specified rank information,
which is usually hard to determine in practice due to the fact that
the real audio signals have diversified spectral characteristics.
Moreover, the rank information can be easily contaminated by
the noise during transmission. In [28], to reduce the time and
storage complexity, a rank-one matrix pursuit (R1MP) method
based on the matrix format of orthogonal matching pursuit
(OMP) is proposed for matrix completion problem, where any
desired matrix is expressed as a linear combination of rank-one
matrices generated by the singular value decomposition (SVD).
Indeed, R1MP performs in a scalable manner and computa-
tionally efficient for large-scale datasets, yet at the cost of a
performance overhead. Different from the proposed method,
R1MP still requires to know the rank information in advance,
and, hence, is not parameter tuning-free.

To overcome the above issues, we propose a novel parameter
tuning-free matrix completion method, which does not require a
pre-determined target rank information. Motivated by the matrix
factorization techniques, the hard-to-handle rank function is
approximated in the proposed method based on the rationale
of alternately minimizing a convex function over one variable
while fixing the others. Herein, different from the existing matrix
factorization-based approaches, the decision matrix is decom-
posed as the sum of a set of rank-one matrices. Then, the iter-
atively reweighted least squares (IRLS) method is employed to

solve the resulting simplified-version of weighted least squares
(LS) problem with non-zeros. The main contributions of this
work are summarized as follows:
� A parameter tuning-free missing-feature reconstruction

method is proposed based on the matrix factorization us-
ing �p-norm regression (p ≥ 1), where alternating min-
imization is employed to solve the resulting nonconvex
optimization problem in a block coordinate descent (BCD)
manner. Moreover, this method is also model training-free
and computationally efficient in terms of CPU runtime.

� The proposed method has been compared thoroughly with
well-known matrix completion techniques, i.e., SVT [25],
[26], TNNR-ADMM [27], and R1MP [28], to reconstruct
the missing features. A systematic analysis for clean signals
and a wide range of noisy scenarios are provided.

� Numerical simulations are conducted for both speech
and environmental sounds, that exhibit distinctive spectral
characteristics, with applications to DNN-based speech
recognition and environmental sound classification.

The rest of the paper is organized as follows. In Section II, the
missing feature reconstruction task that studied in this work is
first formulated. In Section III, the proposed parameter-tuning
matrix completion method is developed to solve the missing
feature reconstruction task and the preliminaries of the matrix
completion are also provided. Section IV presents the numerical
simulations on speech and environmental sound signals under
both clean and noisy conditions with applications to speech
recognition and environmental sound classification. Finally,
conclusions are drawn in Section V.

II. PROBLEM FORMULATION

In speech and environmental sound recognition systems, au-
dio signals are usually transformed into the spectro-temporal
domain by applying Short-time Fourier Transform (STFT) to
the subsampled frames. The resulting power spectrum is further
processed by a mel-scaled or other perceptually motivated filter
banks to extract a low-dimensional and discriminative feature
representation, which we referred to as the spectrogram feature
in this paper. As shown in Fig. 1, the two-dimensional spectro-
gram feature can be represented as a matrix. In the real acoustic
environment, the clean audio signal is usually corrupted by noise
and the resulting spectrogram feature M is approximately equal
to the sum of the clean signal and the noise:1

M(b, d) = X(b, d) +N(b, d) (1)

where X(b, d) and N(b, d) denote the spectrogram component
of the d-th frequency band of the b-th frame for the clean
audio and the noise, respectively. In this work, we consider
additive impulse noises as the major corruption to the clean
audio signals, and such corruption is unevenly distributed across

1The finite-sized samples of uncorrelated processes are rarely perfectly or-
thogonal, and therefore the power spectra of two uncorrelated processes do
not simply add within any particular analysis frame. An additional factor of

2
√

X(b, d)N(b, d) cos(θ) must be included in Equation (1), where θ is the
angle between the d-th term of the complex spectra of the speech and the noise.
However, this term is usually small and hence can be ignored [24].
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Fig. 1. Illustration of the proposed feature reconstruction system, wherein the
matrix completion technique is employed to reconstruct the features from the
corrupted spectrogram and the spectrographic mask. The reconstructed features
are taken as input to the DNN-based classifier for pattern recognition tasks.

the spectrogram. More realistic environmental noises are also
considered in Section IV-E. As shown in Fig. 1, for example, the
resulting binary spectrographic mask Ω that distinguish reliable
and unreliable components and the corrupted spectrogram are
used jointly to reconstruct the clean spectrogram, known as
the feature-vector imputation. In this work, we focus on re-
constructing the clean spectrogram from noisy measurements
and develop a novel parameter tuning-free matrix completion
technique that will be introduced in the following section. Here,
we assume the spectrographic mask is estimated or provided
beforehand. It is worth noting that, independent from the matrix
completion techniques studied in this paper, the effective spec-
trographic mask estimation is another important research topic
that deserves more attention [29], [30].

III. MAIN CONTRIBUTIONS

A. Preliminaries of Matrix Completion

For the ease of notation, we denote M(b, d) as M ∈
Rn1×n2 , whose compact SVD is given by M = ŪΣV̄

T
:=∑

i∈N+
r
σi(M)ūiv̄

T
i with column and row subspaces respec-

tively being denoted as Ū and V̄. They are spanned by the
sets {ūi ∈ Rn1×1}i∈N+

r
and {v̄i ∈ Rn2×1}i∈N+

r
, respectively,

where r represents the target rank of desired matrix. Let MΩ ∈
Rn1×n2 be a data matrix with missing entries whereΩ is a subset
of the complete set of entries [n1]× [n2], with [n] being the list
{1, . . . , n}. In this work, Ω is also referred to as the binary
spectrographic mask. Throughout the paper, the subscript (·)Ω
represents the projection on the known entries. The (i, j) entry
of MΩ, denoted by [MΩ]ij , can be written as:

[MΩ]ij =

{
Mij , if (i, j) ∈ Ω,

0, otherwise.
(2)

The task of matrix completion is to find a matrixX ∈ Rn1×n2

given incomplete observationMΩ by incorporating the low-rank
information. Mathematically, it is formulated as a rank mini-
mization problem:

min
X

rank(X)

s.t. [X]ij = [M]ij , (i, j) ∈ Ω. (3)

Unfortunately, the rank minimization is a combinatorial problem
known to be NP-hard in general. To handle this issue, nuclear
norm minimization is proposed to relax rank minimization [26],
which is analogous to the strategy of approximation of �0-norm
replaced by �1-norm in compressed sensing [31]. The nuclear
norm is the convex envelope of rank. On the basis of that, Candés
and Tao prove that one can deal with the matrix completion prob-
lem via minimizing nuclear norm with a high probability [32].
Therefore, it results in a nuclear norm optimization problem:

min
X

||X||∗
s.t. [X]ij = [M]ij , (i, j) ∈ Ω (4)

where ||X||∗ :=
∑

r σr denotes the nuclear norm of matrix X.
In [33], the incoherence property has been introduced to

derive conditions under which the solution of (4) coincides with
M, where two assumptions with respect to the subspace Ū and
V̄ are stated as follows:
� max {ρ(Ū), ρ(V̄))} ≤ ρ0, ρ0 ∈ R+ is a constant;
� ||∑i∈N+

r
ūiv̄

T
i ||∞ ≤ ρ1

√
r

n1n2
, ρ1 ∈ R+ is a constant.

Herein, ρ(X̄) := n
r supi∈N+

n
||PX̄ · ei||22, wherePX̄ := X̄X̄T

is the orthogonal projection onto a general subspace X̄ (viz. Ū
and V̄) and {ei}i∈N+

n
are the standard basis. Meanwhile, ρ(Ū)

is also expanded to ρ(Ū) = n
r supi∈N+

n

∑
j∈N+

r
|Ū(i, j)|2 ∈

[1, n
r ]. If ρ0 and ρ1 associated with the singular vectors of M

are known to be bounded and sufficiently small, it is proved
in [33] that O(n6/5rlogn) randomly sampled elements with
r = O(n1/5) and (n := max{n1, n2}) suffices to exactly com-
plete M with high probability. Therefore, it is shown that the
error term ||M− M̂||F is bounded by [34]:

||M− M̂||F ≤ 4

√
1

k
(2 + k)nξ + 2ξ (5)

in which n := min{n1, n2}, ξ =
√

(m+
√

8m)σ2 and k =
m

n1n2
. Additionally, X = M̂ is the estimate of M from (4). In

the presence of noise, the resulting noise matrix is bounded by
||P(M−X)||F ≤ ξ, where P(M) represents an element-wise
sampling operator. When m ≥ Cρ2nrlog6n with a positive
numerical constant C, the minimizer of problem (4) is unique
and equals to M with probability at least 1− n−3.

A variety of state-of-the-art approaches have been proposed
to deal with the nuclear norm optimization problem in (4),
including SVT, TNNR-ADMM, and �p-reg [35], to name just
a few. Nevertheless, most of them require the rank information
and full SVD operation. It is impractical to know a priori rank
information. Moreover, the full SVD operation will result in a
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demanding computational complexity for data-driven systems
with large-scale datasets.

B. The Proposed Method

To reduce the computational burden of performing a full SVD
operation, matrix factorization has been employed, correspond-
ing to the following optimization problem [35]:

min
U,V

||MΩ − (UV)Ω||2F (6)

where U ∈ Rn1×r and V ∈ Rr×n2 with r being the rank of
target matrix. Nevertheless, (6) is difficult to address because of
its nonconvexity. One may solve the problem (6) in an iterative
manner as a bi-convex problem [36], U and V are alternately
minimized as follows:⎧⎨

⎩
Vt+1 = argmin

V
||MΩ − (UtV)Ω||2F

Ut+1 = argmin
U

||MΩ − (UVt+1)Ω||2F
. (7)

Then, the target matrix can be computed by M = Ut+1Vt+1

after determining U and V, which is due to the fact that
the low-rank property of X is automatically fulfilled with a
priori rank in each iteration. Matrix factorization has been
widely-used in the topics of recommender system [37], image
restoration [35], [38], data mining and machine learning [39],
direction-of-arrival (DOA) estimation [40], etc. However, it is
worth noting that both of them require a pre-specified rank,
which is challenging to determine in practice. Moreover, the
model in (6), which employs the Frobenius norm, is not robust
against the non-Gaussian noise.

To address that, we devise a simple yet efficient matrix com-
pletion method based on �p-norm (p ≥ 1), where the �p-norm
of matrix E is defined as ||[E]ij ||pp =

∑
i,j |[E]ij|p, (i, j) ∈ Ω.

The �p-norm with p ≥ 1 is convex. At first, we consider that the
decision matrix X is decomposed as a summation of a set of
rank-one matrices, that is:

X =

q∑
�=1

X� (8)

where X� = u�v
T
� . Therefore, the rank information is unnec-

essary for our method, and we just need to find the optimal
number of q. Note that q is not equal to the desired rank of the
approximated matrix X. For a parameter tuning-free method, q
is automatically determined by the number of iterations when
the proposed method converges. Combining with the Equation
(8), the optimization problem in (6) is equivalently transformed
into:

min
X

∣∣∣∣∣
∣∣∣∣∣MΩ −

(
q∑

�=1

X�

)
Ω

∣∣∣∣∣
∣∣∣∣∣
p

p

, p ≥ 1. (9)

To be more specific, it results in the objective function G, as
shown in the following problem:

G : min
u,v

∣∣∣∣∣∣
∣∣∣∣∣∣[M]ij −

[
q∑

�=1

u�v
T
�

]
ij

∣∣∣∣∣∣
∣∣∣∣∣∣
p

p

, (i, j) ∈ Ω, p ≥ 1.

(10)

This formulation is motivated by the matrix factorization
method. However, the difference between the proposed method
and the existing non-negative matrix factorization (NMF) is that
the existing NMF methods require to know the pre-specified
rank, while ours employ a set of rank-one matrices in (8)
and combine with matrix factorization methodology. There-
fore, the proposed model is parameter tuning-free compared
with the existing NMF methods. Let us define the block Υ :=
(Υ1, · · ·Υ2q) = ({u}q�=1, {v}q�=1). From the analysis in [41],
BCD method can converge to a critical point when the following
conditions are satisfied:

G̃ι

(
Υ�

ι |Υ�−1
−ι

)
= G (Υ�

ι |Υ�−1
−ι

)
(11)

G̃ι

(
Υ�

ι |Υ−ι

) ≤ G (Υ�
ι |Υ−ι

)
, ∀Υ−ι (12)

∇G̃ι

(
Υ�

ι |Υ�−1
−ι

)
= ∇G (Υ�

ι |Υ�−1
−ι

)
(13)

G̃ι

(
Υ�

ι |Υ�−1
−ι

)
is continuous inΥ. (14)

where Ḡ({u}q�=1, {v}q�=1) is a surrogate function of
G({u}q�=1, {v}q�=1). Following the rationale of BCD method,
we define the surrogate function as:

Ḡ : min
uq,vq

∣∣∣∣∣∣Rq −
[
uqv

T
q

]
ij

∣∣∣∣∣∣p
p
, (i, j) ∈ Ω, p ≥ 1 (15)

for each q-th iteration, where Rq := MΩ − (
∑q−1

�=1 u�v
T
� )Ω

with q ≥ 2 and R1 = MΩ.
Proposition1: The surrogate function Ḡ in (15) satisfies the

conditions from (11) to (14).
Proof: See Appendix. �
At the �-th iteration, variable Υι, ι = 1, . . . , 2q, is updated by

solving the following problem:

Υ�
ι = argmin

Υι

G̃ι

(
Υι|Υ�−1

−ι

)
(16)

with respect to block variable Υι, and Υ�−1
−ι represents the rest

of the variables obtained at the (�− 1)-th iteration except for
Υι. Instead of optimizing the original objective function, we
alternatively optimize a surrogate function G̃ι(Υι|Υ�−1

−ι ) which
satisfies certain requirements such that the original problem can
be easily tackled.

Toward this end, we utilize the greedy pursuit manner to
search for the best rank-one basis matrix of the current residual
Rq and the IRLS method [42] is employed to tackle the problem
(15) in a BCD manner [41]:

1) Updating u�
q: To be specific, based on the rationale of

alternating minimization, we fix variable v and then optimize
u, resulting in:

u�
q = argmin

uq

∣∣∣∣∣∣Rq −
[
uq(v

�−1
q )T

]
ij

∣∣∣∣∣∣p
p
, (i, j) ∈ Ω. (17)

Support that ri and ui are the i-th row of Rq and i-th entry
of uq , respectively. As {ri}n1

i=1 are independent for each ui,
(17) is equivalent to tackling the following n1 independent sub-
problems:

ui
� = argmin

ui

∣∣∣∣ri − ui(v
�−1
i )T

∣∣∣∣p
p
, (i, j) ∈ Ω, p ≥ 1. (18)
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Since Rq = MΩ − (
∑q−1

�=1 u�v
T
� )Ω and ri = [Rq]i· is the i-th

row of Rq , it is easily observed that the residual error in (18)
is only affected by all non-zero elements in ri and ui(v

�−1
i )T .

Therefore, (18) is further simplified as:

ui
� = argmin

ui

∣∣∣∣̈ri − ui(v̈
�−1
i )T

∣∣∣∣p
p
, p ≥ 1 (19)

where r̈i and v̈�−1
i stand for the ri and v�−1

i with non-zero
entries inside, respectively. The problem (19) with p = 2 is
easily handled as it is a LS problem. To guarantee the solution
of (19) to perform good performance, IRLS is utilized, which
can provide global convergence.

Case 1: For p = 2, the solution of LS is reweighted by
wt

i = 1/(max{δ, |(r̈i − (u�
i)

tv̈�−1
i )T |}), and (u�

i)
t is initialized

at (u�
i)

0 = (v̈�−1
i )T r̈Ti /((v̈

�−1
i )T v̈�−1

i ), where δ is a small reg-
ularization value, e.g., 10−3, to avoid dividing by zero.

Case 2: In the optimization problem of IRLS at 1 ≤ p < 2, it
addresses a weighted LS problem as follows:

(ui
�)t+1 = arg min

(ui)�

∣∣∣∣(r̈i − (u�
i)

tv̈�−1
i )Twt

∣∣∣∣2
2

(20)

where wt
i = 1/(ε+ |(r̈i − (u�

i)
tv̈�−1

i )T |2) 1−p/2
2 , 1 ≤ p < 2.

Additionally, ε is a small positive parameter, e.g., 10−8.
Towards this end, the solution of block {u}q�=1 has been

achieved.
2) Updating v�

q: Taking in similar manner, we update v by
fixing u.

v�
q = argmin

vq

∣∣∣∣∣∣Rq −
[
u�
qv

T
q

]
ij

∣∣∣∣∣∣p
p
, (i, j) ∈ Ω, p ≥ 1. (21)

Then, we have its simplified version with non-zeros, namely:

(vj
�)t+1=arg min

(vj)�

∣∣∣∣(wt)T (r̈j − (ü�
j)

t+1(v�j)
t)
∣∣∣∣2
2
, (i, j)∈Ω

(22)
where r̈j and ü�

j denote the j-th column of Rq and u�
j after

removing missing entries, respectively. The pseudocode of the
proposed method is summarized in Algorithm 1.

Remark 1: Different from the existing matrix completion
approaches withapriori rank information, the proposed method
is parameter tuning-free. Only q is not available in (8). However,
it is worth noting that the selection of q is automatically deter-
mined by the number of iterations when the proposed method
converges.

Remark 2: As the update rules of the proposed method,
viz., (20) and (22), they are similar with the vertex least
squares in graph signal processing, it has been demonstrated
for p = 2 and can be extended for 1 ≤ p < 2 that we have
||Rq − [uqv

T
q ]ij ||pp ≤ ξ, (i, j) ∈ Ω, with O(nγ logn) (γ > 0)

number of iterations, under the assumptions of that the bipartite
undirected graph on the vertex set S = SR ∪ SC is connected
and has clogn diameter for some fixed constant c and maximum
degree Δ(n). SR and SC stand for the sets of rows and columns
of MΩ, respectively, and the maximum degree Δ denotes the
maximum number of neighbors among all nodes of the graph.
Hence, the convergence of the proposed method is guaranteed,
details referred to [43].

Algorithm 1
Require: MΩ and Ω.

Initialize: Randomize v0 and R1 = MΩ

for t = 1, 2, · · · do
for q = 1, 2, · · · do
Ḡ : minuq,vq

||Rq − [uqv
T
q ]ij ||pp, (i, j) ∈ Ω.

1) Updating u�
q via (17) and (20)

2) Updating v�
q via (21) and (22)

3) Rq+1 = Rq − (uqv
T
q )Ω

end for
Stop if the stopping criterion is satisfied.

end for
Ensure: X =

∑q
�=1 u�v

T
�

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the pro-
posed parameter tuning-free matrix completion technique in
missing-feature reconstruction tasks. We first introduce the ex-
perimental setups, which are designed to test the effectiveness
of the proposed technique in restoring distorted spectrograms of
speech and environmental sound signals. Then, we investigate
the applicability and robustness of the proposed method to
the additive Gaussian noise that is a common model for the
communication channel and environment. Finally, we evaluate
the effectiveness of the proposed technique under more realistic
noisy environments. The source code is public available.2

A. Experimental Details

1) Datasets: To provide a comprehensive evaluation of audio
signals with distinctive spectral-temporal characteristics, we
evaluate the proposed matrix completion technique on both
speech and environmental sound reconstruction tasks.

The speech samples are taken from the TIDIGITS [44] dataset
that managed by the Linguistic Data Consortium. This dataset
consists of reading digit sequences of variable lengths from 21
dialectical regions of the United States. We use the subset of
isolated spoken digits from 11 classes (i.e., ‘zero’ to ‘nine’ and
‘oh’), which consists of 2,464 train and 2,486 test utterances.
The utterances are spoken by 111 male and 114 female speakers
at a sampling rate of 20 kHz. This dataset has been used as a
common benchmark for different speech recognition algorithms.

The environmental sound samples are taken from the Real
World Computing Partnership (RWCP) [45] dataset. This dataset
consists of high-fidelity natural sound samples recorded in
the real acoustic environment at a sampling rate of 16 kHz.
Following the experimental setup of [46], we use the same
10 environmental sound classes, including ‘cymbals,’ ‘horn,’
‘phone4,’ ‘bells5,’ ‘kara,’ ‘bottle1,’ ‘buzzer,’ ‘metal15,’ ‘whis-
tle1’ and ‘ring’. We randomly selected 40 samples from each
class, wherein 20 samples are used to train a DNN-based sound
classifier and the rest are used for evaluation.

2[Online]. Available: https://github.com/deepspike/audioImpainting
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The utterances are segmented into frames of 100 ms and 50 ms
for the RWCP and TIDIGITS datasets respectively, with 50%
overlap between the neighboring frames. The 20-dimensional
mel-scaled filter bank (FBANK) features are extracted before
input to the DNN-based classifier. The feature masking and
reconstruction studies are performed on the FBANK features.
To ensure a consistent temporal dimension, we first determine
the maximal time duration Tmax (total number of frames) from
the training set of each dataset. Then, we zero-pad all of the
training and testing samples along the time dimension to Tmax.
For those testing samples that may have a time duration longer
than Tmax (rarely happen in the testing set), we discard the
rest of the frames beyond Tmax. Specifically, the input feature
dimensions for the RWCP and TIDIGITS datasets are 20× 61
and 20× 101, respectively.

As mentioned earlier, different sound classes exhibit distinc-
tive spectral-temporal dynamics. Hence, we use a convolutional
neural network that is inspired by the AlexNet [47] to classify
different speech and environmental sound samples. The network
has a structure of 24c3s1-48c3s2-48c3s1-96c3s2-128c3s2-256-
Nclass, wherein the numbers before and after ‘c’ refers to the
number of convolution kernels and the corresponding kernel
size (same size for both frequency and time dimensions) at
each layer. The number after ‘s’ refers to the stride of the
convolution operation at each layer. Instead of using pooling
layers to reduce the dimensionality of feature maps, we apply
convolution kernels at a stride of 2 at layer 2, 4, 5 to achieve the
dimensionality reduction.

To prevent overfitting, we add dropout layers with a prob-
ability of 15% after the last convolutional layer and the first
fully-connected layer. The models are trained with the Adam
optimizer and the cross-entropy loss function for 50 epochs.
We initialize the learning rate at a value of 0.01. A batch size
of 16 and 64 are used for the RWCP and TIDIGITS dataset,
respectively.

To simulate impulsive noise which causes spectrogram fea-
ture components missing, we generate random binary masks at
different probabilities, ranging from 0% to 40% at an interval
of 10%, to corrupt the original contents of the spectrogram
features. We compare the proposed parameter tuning-free tech-
nique with other existing matrix completion techniques that
require extensive parameter tuning, including SVT [23], [26],
TNNR-ADMM [27], and R1MP [28]. Since rank cannot be
fixed in SVT, the thresholding parameter τ is chosen as the
tuning parameter to obtain the desired rank solution, which
here is set as proposed in [25], [26]. For a fair comparison with
the proposed method under noisy conditions, we use the noisy
version of SVT as proposed in [26]. It is also worth noting
that the TNNR-ADMM method is designed for eliminating
Gaussian noise, however, its performance is dependent on the
pre-specified rank of the data. In this work, the rank is determined
by the number of the largest singular values,3 viz., rank = 2

3Assume the singular values are in a descending order, that is, λi > λi+1.
The rank r is determined as the first index that satisfying

∑r

1
λi/
∑n

1
λi > φ,

where n is the total number of singular values. In this work, we set φ to a value
of 0.95.

for RWCP and rank = 3 for TIDIGITS datasets, respectively.
In addition, the penalty parameter β is equal to 0.01, and the
remaining parameters are chosen as in [27]. Similar to our
method, R1MP is developed from a set of rank-one matrices, but
R1MP requires to pre-specify the rank. We use the same rank
as for TNNR-ADMM. For the proposed method, we use p = 2
for the case of Gaussian noise, and p = 1.2 for non-Gaussian
noises. These values were determined empirically.

2) Evaluation Metrics: We use the signal-to-noise ratio
(SNR) to evaluate the quality of the reconstructed spectrogram
features on the test set of the two datasets. Moreover, to study
the interaction between the spectrogram feature and DNN-based
classifier for sound and speech recognition tasks, we evaluate the
classifier performance on both the corrupted and reconstructed
features. Without any prior knowledge about the feature degra-
dation, we train these classifiers with clean spectrogram fea-
tures. We report the classification accuracies for both corrupted
and reconstructed features under different mask ratios. The
experimental results are summarised from 5 independent runs.
Similarly, to compare the computational efficiency of different
matrix completion techniques, we calculate the average CPU
time required per sample across the 5 independent runs.

3) Spectrographic Mask Estimation: To study the effectiv-
ness of the proposed matrix completion technique in recon-
structing spectrogram features corrupted by the impulsive noises
(Sections IV-B and IV-C), we use oracle masks that can be easily
determined from the corrupted spectrograms.

To further evaluate the robustness of the proposed technique
under other noisy scenarios, both Gaussian (Section IV-D) and
non-Gaussian (Section IV-E), we follow the mask estimation
method introduced in [24], whereby we estimate the mask
for unreliable entries based on the negative energy criterion.
Specifically, we assume the first frame of each utterance to be
the region of silence and initialize the noise power spectra to
the power spectrum of this frame. The noise spectra are further
estimated recursively for subsequent frames. Let M(b, d) and
N̂(b, d) represent the power spectra of the observed sound signal
and the estimated noise respectively, wherein b and d refer to the
index of the frame and the frequency band. The noise spectra
N̂(b, d) can be obtained recursively as:

N̂(b, d) =

⎧⎪⎨
⎪⎩

(1− λ)N̂(b− 1, d) + λM(b, d),

ifM(b, d) < βN̂(b− 1, d);

N̂(b− 1, d), otherwise.

(23)

where λ and β are set to 0.95 and 2 respectively following
the hyperparameters setting advised in [24] without any further
tuning. Then, the unreliable spectral components are identified
based on the negative energy criterion in which the component
is classified as unreliable if |M(b, d)| ≤ |N̂(b, d)|.

B. Missing-Feature Reconstruction for Environmental Sound

Table I provides the results for the feature reconstruction on
the RWCP environmental sound dataset with oracle mask. It is
obvious that all the matrix completion techniques are competent
at restoring the missing features and achieve high SNRs across
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TABLE I
SPECTROGRAM RECONSTRUCTION RESULTS UNDER DIFFERENT MASK RATIOS.

THE RESULTS ARE OBTAINED FROM FIVE INDEPENDENT SIMULATIONS

Fig. 2. Illustration of the missing feature reconstruction on the RWCP dataset. The dark blue squares refer to location where the orignal features are masked.
Our proposed matrix compeletion technique can restore the missing features with high quality across different noise levels.

different corruption levels. Among the four matrix comple-
tion techniques studied in this work, our proposed technique
consistently outperforms the TNNR-ADMM, SVT and R1MP
methods, except for the challenging scenario with a 40% mask
ratio. Herein, the mask ratio is defined as the percentage of the
spectral components that are corrupted by noise and considered
as unreliable. That is, 1− ‖Ω‖/(|n1| ∗ |n2|), where ‖Ω‖ de-
notes the number of non-zero elements in Ω. To allow a better
qualitative evaluation of the proposed matrix completion tech-
nique, we provide two examples from the ‘whistle’ and ‘cymbal’
classes as shown in Fig. 2. The reconstructed spectrograms
exhibit high similarities to the original clean spectrograms across
different corruption levels, suggesting the proposed technique
can effectively compensate for missing features.

As the classification results given in Table II, the DNN-
based classifier is highly sensitive to the masking noise, and
the classification accuracy drops substantially from 99.40%
to 35.70% when only 10% of the features are corrupted. In

contrast, with the proposed method, the DNN-based classifier
can still maintain a high classification accuracy after feature
reconstruction and achieves a mean accuracy of 91.80% even
under a corruption level of 40%. This promising result again
highlights the effectiveness of the proposed matrix completion
technique, which significantly improves the robustness of sound
classification systems to missing features.

In addition to the superior feature reconstruction capability,
our proposed matrix completion technique is highly efficient
compared to the TNNR-ADMM and SVT methods. This can
be explained by the fact that the proposed method does not
require the time-consuming hyperparameter search. As shown
in Fig. 4, under the mask ratio of 10%, our proposed method
achieves a speedup of 2.0 and 2.4 times compared to the TNNR-
ADMM and SVT methods respectively. It is worth noting that
our required computation time reduces with a growing level
of corruption, this is due to the fact that less non-zero values
are involved in the process of computation according to the
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TABLE II
CLASSIFICATION RESULTS OF NEURAL NETWORK CLASSIFIERS UNDER DIFFERENT MASK RATIOS.

THE RESULTS ARE OBTAINED FROM FIVE INDEPENDENT SIMULATIONS

Fig. 3. Illustration of the missing feature reconstruction on the TIDIGITS dataset.The dark blue squares refer to location where the orignal features are masked.
Our proposed matrix compeletion technique can restore the missing features with high quality across different noise levels.

solutions of Equations (20) and (22). In contrast, the compu-
tation time remains relatively stable for the TNNR-ADMM and
SVT methods across different corruption levels. In the SVT,
since the singular values exceeding the thresholding parameter
τ and the corresponding singular vectors are required to compute
per iteration, it is computationally demanding for handling large-
scale dataset. We note that the R1MP converges at a speed that
almost two orders of magnitude faster than the other methods
in terms of the CPU time. The reasons are twofold. The most
time-consuming step of the R1MP method is to compute the
top singular vector pair of a sparse matrix, with only O(|Ω|)
operations at each iteration. Furthermore, an economic weight
updating rule is exploited to avoid to store all rank-one matrices
in the current OMP basis set. Nonetheless, because of these two
reasons, its feature reconstruction performance is significantly
inferior to other methods.

C. Missing-Feature Reconstruction for Speech

As shown in Fig. 3, the proposed matrix completion tech-
nique allows a high-fidelity reconstruction of the corrupted

spectrogram features of speech signals. This observation can be
explained by the high SNRs given in Table I, where the SNRs
remain higher than 58.05 dB under different corruption levels.
Moreover, our proposed technique achieves superior reconstruc-
tion results and consistently outperforms other matrix comple-
tion techniques, except for the severely degraded scenario with
a mask ratio of 40% where the SVT method achieves a slightly
better result.

Similar to the observation in the environmental sound classi-
fication task, we notice that the DNN-based speech recognizer
is also highly sensitive to the masking noise as the classification
accuracies drop rapidly with an increasing amount of feature
corruption. As the results are given in Table II, the proposed
matrix completion technique effectively alleviates the effect
of missing features and the classification accuracy degradation
remains less than 3% for the masking ratio up to 40%. Notably,
the classification accuracy can still maintain at 95.79% under the
challenging scenario where 40% of the spectrogram features are
masked.

In terms of the computational time, our proposed method
increases substantially to 0.316 seconds (at a masking ratio
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Fig. 4. Compare the required CPU time for missing feature reconstruction tasks under different corruption levels. For clarity, the results of different matrix
completion techniques are color-coded. Note that the R1MP method requires around two order of magnitude less CPU times than the rest of the methods. Although
our method is guaranteed to converge, it requires more iterations to obtain the optimal q on the TIDIGITS dataset.

Fig. 5. Compare the feature reconstruction performance of different matrix completion techniques under varying Gaussian noise levels.

of 10%) on the TIDIGITS dataset, which is 3.2x longer than
that required for the RWCP dataset. A thorough investigation
reveals that the average number of frames increases from 20
(RWCP) to 38 (TIDIGITS), which can partially account for
the computational time increment. On the other hand, although
the proposed method is parameter tuning-free, q is determined
automatically by the number of iterations when our method
converges. For speech signals in the TIDIGITS dataset, finding
q from the extracted spectrogram features is harder compared
to that in the RWCP dataset, thereby requires a longer time
to converge. In contrast, the TNNR-ADMM and SVT meth-
ods are less sensitive to the higher temporal dimensionality
of the speech signal, and the required CPU runtime only in-
creases slightly from the earlier timing analysis on the RWCP
dataset. While our proposed method becomes competitive when
more features are corrupted, and requires only about 50% of
the CPU time to these two methods when 40% features are
masked.

D. Missing-Feature Reconstruction Under Gaussian Noise

Besides the impulse noise, the sound signals are also ex-
posed to other less severe quasi-stationary noise in real acoustic
environments and communication channels. To investigate the
applicability and effectiveness of the proposed matrix comple-
tion technique to these scenarios, we add Gaussian noise at
different signal-to-noise ratios (SNR), ranging from 5 dB to
20 dB, to the corrupted spectrogram that has a fixed mask ratio of
10%. As the feature reconstruction results are shown in Fig. 5,
the SNRs deteriorate substantially when adding Gaussian and
impulse noises to the spectrogram feature. The TNNR-ADMM
and R1MP methods can effectively restore the masked features,
while the reconstruction result is slightly poorer than the original
clean feature with Gaussian noise. The feature reconstructed by
the SVT method achieves an average SNR that is higher than the
original clean feature with Gaussian noise, it suggests that the
SVT method can not only restore the masked feature but also
compensate for the Gaussian noise. Our method consistently
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TABLE III
COMPARISON OF DIFFERENT MATRIX COMPLETION TECHNIQUES FOR

MISSING-FEATURE RECONSTRUCTION ON THE NOISE CORRUPTED SAMPLES

FROM THE TIDIGITS DATASET. THE AVERAGE CLASSIFICATION RESULTS (%)
OVER THREE INDEPENDENT SIMULATIONS ARE REPORTED

outperforms all these matrix completion methods by more than
2 dB for both datasets. We also note that the estimated mask
works well under low noise scenarios, where SNR ≥ 15 dB.
While the quality of the estimated mask degrades under more
adverse scenarios, adversely affecting the feature reconstruction
results. Nevertheless, the reconstruction results are still better
than or comparable to other baseline methods that are using
oracle mask. This result demonstrates a promising prospect
of applying the proposed matrix completion technique to im-
prove system performance under adverse acoustic conditions.
It is also worth noting that the classification accuracy could be
further improved by injecting the prior-knowledge of the type
and data statistic of the noise during the DNN-based classifier
training [46].

The classification results using the DNN-based classifier are
provided in Tables III and IV for the TIDIGITS and RWCP
datasets, respectively. For a fair comparison with other non-
Gaussian noises evaluated in Section IV-E, no impulse noises
are added here. By restoring the features from noise, the pro-
posed method can achieve a promising result for SNRs above
10 dB with an accuracy above 90%. While the results degrade
rapidly for more adverse acoustic environments, especially for
the TIDIGITS dataset. This can be attributed to the fact that no
prior information about the audio signals nor the noises have
been exploited by the proposed matrix completion methods.
We note that the feature reconstruction performance for the
Gaussian Noise is superior to other more realistic noises in the
following section. This is due to a higher level of variability
and hence complexity involved in those more realistic acoustic
environments.

E. Missing-Feature Reconstruction
Under Non-Gaussian Noise

To further investigate the feature reconstruction performance
of the proposed method under real acoustic environments,

TABLE IV
COMPARISON OF DIFFERENT MATRIX COMPLETION TECHNIQUES FOR

MISSING-FEATURE RECONSTRUCTION ON THE NOISE CORRUPTED SAMPLES

FROM THE RWCP DATASET. THE AVERAGE CLASSIFICATION RESULTS (%)
OVER THREE INDEPENDENT SIMULATIONS ARE REPORTED

we conduct experiments by adding noise samples from the
NOISEX-92 dataset [48] onto the clean audio samples at dif-
ferent SNRs, ranging from 0 dB to 20 dB. We provide the
classification results in Tables III and IV for the TIDIGITS and
RWCP datasets, respectively. Across all the noisy scenarios been
tested (i.e., Factory, Car, and Babble), the reconstructed features
from the TNNR-ADMM, SVT, and our methods have shown
promising results under low noise scenarios (15 dB and 20 dB),
with a classification accuracy above 90%. The performance
degrades smoothly until 5 dB where accuracies of above 60%
can still be achieved. Among all the methods been evaluated, our
proposed method consistently outperforms the other methods
across all the testing scenarios and audio characteristics, i.e.,
environmental sound and speech. Below 5 dB SNR, classifica-
tion accuracy drops significantly. This can be explained by the
fact that the matrix completion methods do not exploit any prior
knowledge of the noisy environments and the audio samples,
therefore, it remains challenging to apply these methods to the
highly corrupted samples.

V. CONCLUSION

In this work, we apply a matrix completion technique to tackle
the missing-feature reconstruction task. Most of the existing
matrix completion techniques require hyperparameter tuning
which is costly and difficult in practice. To resolve this problem,
a parameter tuning-free matrix completion method based on
matrix factorization is proposed. The proposed method can
restore the missing features with high fidelity and computation
efficiency, as demonstrated with both speech and environmental
sound signals. Moreover, the experiments in speech recognition
and environmental sound classification tasks also highlight the
importance of high-quality audio features and the effectiveness
of the proposed matrix completion technique in addressing
the feature degradation problems including impulse and quasi-
stationary Gaussian noises. To investigate the applicability of our
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method to more challenging acoustic environments, our method
allows optimizing to �p-norm (p ≥ 1) to handle non-Gaussian
noises, e.g., factory, car, and babble noises as used in our
experimental evaluation. We demonstrate high robustness to an
intermediate level of such noises with the proposed matrix com-
pletion method. However, given no prior knowledge about the
acoustic environments and audio samples, it remains challenging
to apply matrix completion techniques to reconstruct highly
corrupted audio features. Therefore, matrix completion should
be considered as complementary to other sparse imputation
methods [16], [17], [19] when the required prior information
is not available.

It is worth noting that the problem tackled by the proposed
method is different from that in the conventional audio inpainting
framework, where short-period, continuous audio segments are
missing. The proposed method is not applicable to recover the
data wherein all the components in a particular column are
erroneous or missing. As future work, we will explore differ-
ent strategies to remove this constraint. The possible solutions
include characterizing the corrections among corrupted columns
by exploiting low-rank Hankel property [49], or conducting
imputation on a modeling framework using information across
multiple references, solved by the matrix co-clustering factor-
ization (MCCF) in iterative update [50].

APPENDIX

Proof of Proposition 1: At first, by substituting the Rq into
(15), we can see that the problems Ḡ in (15) and G in (10) are
the same. Regarding the condition in (12), we have:

〈Xq,Rq〉 = 〈uqv
T
q ,Rq〉 = σmax(Rq) (24)

based on the definition of Xq = uqv
T
q , where σmax(Rq) is the

maximum singular value of the residual matrix Rq. According
to the analysis of rank-one matrix approximation in [28], we get:

||Rq||pp ≤ ||Rq−1||pp − 〈Xq−1,Rq−1〉p (25)

=

(
1− σp

max(Rq−1)

||Rq−1||pp

)
||Rq−1||pp, (26)

because of the convexity of �p-norm at p ≥ 1, where 〈·〉p de-
notes the �p-correlation [35]. From the recurrence relation, we
conclude:

||Rq||pp ≤ ||MΩ||pp
q−1∏
�=1

(
1− σp

max(R�)

||R�||pp

)
. (27)

Since 0 < 1
rank(R�)

≤ σmax(R�)
||R�||pp ≤ 1, ||Rq||pp ≤ αq−1||MΩ||pp

for 0 ≤ α < 1. Besides, for each Υι, ι = 1, . . . , 2q, it is easy
to observe that the least squares problem in (15) is convex and
continuous when the others are fixed. Therefore, the conditions
from (11) to (14) are satisfied.
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