

Neural Information Processing Systems Foundation

BACKGROUND AND MOTIVATION

Channel pruning reduces the model size and speeds up the inference by removing redundant channels directly. Existing methods include:

- Training-from-scratch methods: select channels to minimize the **cross-entropy loss** with sparsity regularization [1].
- **Reconstruction-based methods**: select channels to minimize the reconstruction error of feature maps between the pruned model and a pre-trained model [2].

Limitations of existing channel pruning methods:

- Training-from-scratch methods: are difficult to converge.
- **Reconstruction-based methods**: ignore the **discriminative power**.
- Both methods result in **apparent drop** in accuracy.

Our solution: propose a discrimination-aware channel pruning (DCP) scheme to choose channels with true discriminative power.

CONTRIBUTIONS

- We propose a discriminative-aware channel pruning (DCP) scheme to choose the channels with true discriminative power.
- We formulate the channel selection problem as an $\ell_{2,0}$ -norm constrained optimization problem and propose a greedy method to solve the resultant optimization problem using SGD.
- Extensive experiments demonstrate the effectiveness of DCP.

PROBLEM DEFINITION

• **Channel Pruning** prunes those redundant channels in **W** to save the model size and accelerate the inference speed in Eq. (1)

$$\mathbf{O}_{i,j,:,:} = \sum_{k=1}^{c} \mathbf{X}_{i,k,:,:} * \mathbf{W}_{j,k,:,:},$$
(1)

where $\mathbf{X}_{i,k,:,:}$ is the input feature map, $\mathbf{W}_{j,k,:,:}$ denotes the parameters and $O_{i,j,...}$ is the output feature map.

• $\ell_{2,0}$ -norm constraint on W to choose channels

$$||\mathbf{W}||_{2,0} = \sum_{k=1}^{c} \Omega(\sum_{j=1}^{n} ||\mathbf{W}_{j,k,:,:}||_{F}) \le \kappa_{l},$$
(2)

where $\Omega(a) = 1$ if $a \neq 0$, $\Omega(a) = 0$ if a = 0, $|| \cdot ||_F$ represents the Frobenius norm, and κ_l denotes the desired number of channels at the layer l. Given a predefined pruning rate $\eta \in (0, 1)$, we can calculate $\kappa_l = \lceil \eta c \rceil$.

Discrimination-aware Channel Pruning for Deep Neural Networks Zhuangwei Zhuang^{*}, Mingkui Tan^{*†}, Bohan Zhuang^{*}, Jing Liu^{*}, Yong Guo, Qingyao Wu, Junzhou Huang, Jinhui Zhu[†]

• We conduct discrimination-aware channel pruning for each layer involved in the considered stage by solving following problem:

 $\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) = \mathcal{L}_M(\mathbf{W}) + \lambda \mathcal{L}_S^p(\mathbf{W}), \quad \text{s.t.} \|\mathbf{W}\|_{2,0} \le \kappa_1, \quad (3)$

where λ balances the two terms, W is the model parameters of a considered layer, $\mathcal{L}_M(\mathbf{W})$ is the reconstruction error, and $\mathcal{L}_S^p(\mathbf{W})$ is the cross-entropy loss.

CONVEXITY OF THE LOSS FUNCTION

Proposition 1. (Convexity of the loss function) Let W be the model parameters of a considered layer. Given the mean square loss and the crossentropy loss, then the joint loss function $\mathcal{L}(\mathbf{W})$ is convex w.r.t. \mathbf{W} .

DISCRIMINATION-AWARE CHANNEL PRUNING

Algorithm 1 Discrimination-aware channel pruning (DCP)

Input: Pre-trained model M, training data $\{\mathbf{x}_i, y_i\}_{i=1}^N$, and parameters $\{\kappa_l\}_{l=1}^L$. for $p \in \{1, ..., P + 1\}$ do Construct loss \mathcal{L}_{S}^{p} to layer L_{p} as in Figure 1. Learn $\boldsymbol{\theta}$ and **Fine-tune** M with \mathcal{L}_S^p and \mathcal{L}_f . for $l \in \{L_{p-1} + 1, ..., L_p\}$ do Do **Channel Selection** for layer *l* using Algorithm 2. end for end for

- DCP introduces *P* discrimination-aware losses and updates the model to increase the **discriminative power** of intermediate layers.
- DCP performs channel pruning with (P + 1) stages.

GREEDY ALGORITHM

Algorithm 2 Greedy algorithm for channel selection

Input: Training data, model M, parameters κ_l , and ϵ . **Output:** Selected channel subset \mathcal{A} and model parameters $\mathbf{W}_{\mathcal{A}}$. Initialize $\mathcal{A} \leftarrow \emptyset$, and t = 0. while (stopping conditions are not achieved) do Compute gradients of \mathcal{L} w.r.t. W: $\mathbf{G} = \partial \mathcal{L} / \partial \mathbf{W}$. Find the channel $k = \arg \max_{j \notin \mathcal{A}} \{ ||\mathbf{G}_j||_F \}.$ Let $\mathcal{A} \leftarrow \mathcal{A} \cup \{k\}$. Solve Problem (4) to update W_A . Let $t \leftarrow t + 1$. end while

• Instead of solving problem (3), DCP uses a greedy algorithm to optimize W w.r.t. the selected channels by minimizing:

 $\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}), \text{ s.t. } \mathbf{W}_{\mathcal{A}^c} = \mathbf{0},$

where $\mathbf{W}_{\mathcal{A}^c}$ denotes the submatrix indexed by \mathcal{A}^c which is the complementary set of \mathcal{A} .

STOPPING CONDITIONS

- Given a predefined parameter κ_l , Algorithm 2 will be stopped if $||\mathbf{W}||_{2,0} > \kappa_l.$
- Since \mathcal{L} is convex, $\mathcal{L}(\mathbf{W}^t)$ will monotonically decrease with iteration index t in Algorithm 2. The number of selected channels can be automatically determined by following stopping condition:

$$|\mathcal{L}(\mathbf{W}^{t-1}) - \mathcal{L}(\mathbf{W}^t)| / \mathcal{L}(\mathbf{W}^0) \le \epsilon,$$

where $\mathcal{L}(\mathbf{W}^t)$ is the joint loss function with iteration t and ϵ is a tolerance value.

RESULTS ON CIFAR-10 AND ILSVRC-12

Table 1: Comparisons on CIFAR-10. "-" denotes that the results are not reported.

Model		ThiNet	CP	Sliming	WM	WM+	Random DCP	DCP	DCP-Adapt
VCCNot	#Param.↓	$1.92 \times$	$1.92 \times$	$8.71 \times$	$1.92 \times$	$1.92 \times$	$1.92 \times$	$1.92 \times$	15.58×
(Baseline 6.01%)	#FLOPs↓	$2.00 \times$	$2.00 \times$	$2.04 \times$	$2.00 \times$	$2.00 \times$	$2.00 \times$	$2.00 \times$	2.86 ×
	Err. gap (%)	+0.14	+0.32	+0.19	+0.38	+0.11	+0.14	-0.17	-0.58
DocNot 56	#Param.↓	$1.97 \times$	-	_	$1.97 \times$	$1.97 \times$	$1.97 \times$	$1.97 \times$	3.37 ×
(Baseline 6.20%)	#FLOPs↓	$1.99 \times$	$2 \times$	-	$1.99 \times$	$1.99 \times$	$1.99 \times$	$1.99 \times$	$1.89 \times$
	Err. gap (%)	+0.82	+1.0	-	+0.56	+0.45	+0.63	+0.31	-0.01

Table 2: Comparisons on ILSVRC-12. The top-1 and top-5 error (%) of the pre-trained model are **23.99 and 7.07**, respectively. "-" denotes that the results are not reported.

N	Iodel	ThiNet	CP	WM	WM+	DCP
	#Param.↓	$2.06 \times$	-	$2.06 \times$	$2.06 \times$	$2.06 \times$
DecNet 50	#FLOPs↓	$2.25 \times$	$2 \times$	$2.25 \times$	$2.25 \times$	$2.25 \times$
INESINCI-JU	Top-1 gap (%)	+1.87	-	+2.81	+2.41	+1.06
	Top-5 gap (%)	+1.12	+1.40	+1.62	+1.28	+0.61

• DCP achieves the best performance under the same acceleration rate.

Exploring pruning rate and λ

Table 4: Comparisons on ResNet-18 and ResNet- Table 5: Pruning results on ResNet-56 with dif-50 with different pruning rates. We report the top-1 ferent λ on CIFAR-10. and top-5 error (%) on ILSVRC-12.

 $0 (\mathcal{L}_M \text{ only})$

1.0 (\mathcal{L}_S only)

0.005

0.01

0.05

Training err.

7.96

7.61

6.86

6.36

4.18

3.43

2.10

Testing err.

12.24

11.89

11.24

11.00

8.8/

Network	η	Top-1/Top5 err.			
	0% (baseline)	30.36/11.02			
DocNat 10	30%	30.79/11.14			
Kesinel-18	50%	32.65/12.40			
	70%	35.88/14.32			
	0% (baseline)	23.99/7.07			
DocNat 50	30%	23.60/6.93			
KESINEI-JU	50%	25.05/7.68			
	70%	27.25/8.87			

- The performance of the pruned models go worse The performance of the pruned model imwith the increase of pruning rate.
- proves with increasing λ .
- ResNet-50 with pruning rate of 30% outper- Both the reconstruction error and the crossforms the pre-trained model.
- entropy loss contribute to better performance.

EFFECT OF THE STOPPING CONDITION

Table 5: Effect of ϵ for channel selection over VGGNet on CIFAR-10. Testing orr (0%) #Dorom | #EI ODa |

L022	E	105 ting cm (70)	π I al al II. \downarrow	$\pi \Gamma LOI 5 \downarrow$
	0.1	12.68	152.25×	27.39×
\mathcal{L}	0.01	6.63	$31.28 \times$	$5.35 \times$
	0.001	5.43	$15.58 \times$	$2.86 \times$

• A smaller ϵ leads to better performance of the pruned model.

VISUALIZATION OF FEATURE MAPS

(a) Input image (b) Feature maps of the pruned channels (c) Feature maps of the selected channels

• Feature maps of the pruned channels are **less informative**.

REFERENCES

- [1] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning efficient convolutional networks through network slimming. In *ICCV*, 2017.
- [2] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network compression. In *ICCV*, 2017.

CONTACT INFORMATION

- Correspondence to: Prof. Mingkui Tan
- Email: mingkuitan@scut.edu.cn
- School: South China University of Technology